Articles
  • Atomic ordering reation and associated variation of magnetic coercivity of oriented L10-Fept nanoparticles
  • Kazuhisa Sato*, Bo Biana and Yoshihiko Hirotsu
  • The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 5670047, Japan a Presently at: Carnegie Mellon Univ., Pittsburgh, PA 15213-3890, USA
Abstract
Atomically ordered FePt nanoparticles (L10-type structure) covered with amorphous (a-) Al2O3 have been fabricated. In this process, Fe particles were deposited on Pt "seed" particles which were epitaxially grown on (100) NaCl or MgO substrates. Annealing the a-Al2O3/Fe/Pt films at temperatures higher than 773 K leads to a formation of ordered nanoparticles with mutual fixed orientation in a monolayer form. Three variant ordered domains of the tetragonal L10 structure coexisted in a single nm-sized FePt particle, even in a particle as small as 7 nm. According to in-situ electron diffraction study, the degree of order of the ordered structure started to increase on annealing at 773 K and almost saturated on annealing at 873 K for 16 h. The magnetic coercivity varied depending on the particle size and the degree of order in the L10 structure formation. The perpendicular coercivity exceeded the in-plane one during the annealing. The in-plane coercivities of FePt nanoparticles measured both parallel to [100]MgO and [010]MgO directions were almost equal in numerical value. These results reflect the ordered domain formation process and the volume fraction of the domains. Remanent magnetization decay measured for the in-plane magnetization revealed a magnetic relaxation with the type of magnetic dipolar interaction between the FePt particles.

Keywords: Atomic ordering, L10-FePt, Amorphous Al2O3, HRTEM, Hard magnerism, High-density recording, Thermal fluctation, Remanent magnetization decay

This Article

  • 2000; 1(2): 109-114

    Published on Dec 31, 2000