Articles
  • Electrochemical synthesis for a greener future: Insights from Kolbe electrolysis
  • Abhishek Saxena, Amith Abraham and Byoung-In Sang*

  • Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. F. Harnisch and U. Schröder, Chem. Electro. Chem. 6[16] (2019) 4126-4133.
  •  
  • 2. Y.H. Budnikova, E.L. Dolengovski, M.V. Tarasov, and T.V. Gryaznova, J. Solid State Electrochem. 28[3] (2024) 659-676.
  •  
  • 3. G. Hilt, Curr. Opin. Electrochem. (2024) 101425.
  •  
  • 4. S. Möhle, M. Zirbes, E. Rodrigo, T. Gieshoff, A. Wiebe, and S.R. Waldvogel, Angew. Chem. Int. Ed. 57[21] (2018) 6018-6041.
  •  
  • 5. S. Imeni, A. Makarem, and R. Javahershenas, Asian J. Org. Chem. 12[8] (2023) e202300303.
  •  
  • 6. S. Garg, H.S. Sohal, D.S. Malhi, M. Kaur, K. Singh, A. Sharma, V. Mutreja, D. Thakur, and L. Kaur, Curr. Org. Chem. 26[10] (2022) 899-919.
  •  
  • 7. F.C. Walsh, C.P. de León, C. Kerr, S. Court, and B.D. Barker, Surf. Coat. Technol. 202[21] (2008) 5092-5102.
  •  
  • 8. P. Ragupathy, S.D. Bhat, and N. Kalaiselvi, WIREs Energy Environ. 12[2] (2023) e464.
  •  
  • 9. L. Mais, N. Melis, A. Vacca, and M. Mascia, Environ. Sci. Water Res. Technol. 10[2] (2024) 399-407.
  •  
  • 10. N. Sbei, S. Aslam, and N. Ahmed, React. Chem. Eng. 6[8] (2021) 1342-1366.
  •  
  • 11. M. Sugiya and H. Nohira, Bull. Chem. Soc. Jpn. 73[3] (2000) 705-712.
  •  
  • 12. H.J. Schäfer, Eur. J. Lipid Sci. Technol. 114[1] (2012) 2-9.
  •  
  • 13. S. Lateef, S.R. Mohan, and S.R. Reddy, Tetrahedron Lett. 48[1] (2007) 77-80.
  •  
  • 14. C. Taube, A. Fischer, and M. Beyer, Chem. Cat. Chem. (2024) e202400628.
  •  
  • 15. A.V. Shtelman and J.Y. Becker, J. Org. Chem. 76[11] (2011) 4710-4714.
  •  
  • 16. L. Catacuzzeno, A. Michelucci, and F. Franciolini, Biomolecules 14[6] (2024) 684.
  •  
  • 17. I.D. Ayodeji, S.A. Ayodeji, B.J. Abiodun, and A. Odun, in “Innovative developments of materials for economic diversification” (NIMACON, 2020) p.18.
  •  
  • 18. O. Smutok and E. Katz, J. Solid State Electrochem. 28[3] (2024) 683-710.
  •  
  • 19. M. Faraday, Ann. Phys. 109[31‐34] (1834) 481-520.
  •  
  • 20. H. Kolbe, Justus Liebigs Ann. Chem. 69[3] (1849) 257-294.
  •  
  • 21. D. Klüh, W. Waldmüller, and M. Gaderer, Clean Technol. 3[1] (2021) 1-8.
  •  
  • 22. A. Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, and S.R. Waldvogel, Angew. Chem. Int. Ed. 57[20] (2018) 5594-5619.
  •  
  • 23. J.A. Stapley and J.N. BeMiller, Carbohydr. Res. 342[3-4] (2007) 610-613.
  •  
  • 24. M. Galicia, M.A. González-Fuentes, D.P. Valencia, and F.J. González, J. Electroanal. Chem. 672 (2012) 28-33.
  •  
  • 25. S. Payamifar, L. Behrouzi, and A.P. Marjani, Arabian J. Chem. (2024) 105822.
  •  
  • 26. M. Li and X. Cheng, Isr. J. Chem. 64[1-2] (2024) e202300067.
  •  
  • 27. M.O. Nordkamp, T. Ashraf, M. Altomare, A.C. Borca, P. Ghigna, T. Priamushko, S. Cherevko, V.A. Saveleva, C. Atzori, A. Minguzzi, and X. He, Surf. Interfaces 44 (2024) 103684.
  •  
  • 28. B. Xu, D. Li, Q. Zhao, S. Feng, X. Peng, and P.K. Chu, Coord. Chem. Rev. 502 (2024) 215609.
  •  
  • 29. E. Santillan-Jimenez and M. Crocker, J. Chem. Technol. Biotechnol. 87[8] (2012) 1041-1050.
  •  
  • 30. M.C. Leech and K. Lam, Acc. Chem. Res. 53 (2020) 121-134.
  •  
  • 31. F.J. Holzhauser, J.B. Mensah, and R. Palkovits, Green Chem. 22 (2020) 286-301.
  •  
  • 32. A.K. Vijh and B.E. Conway, Chem. Rev. 67 (1967) 623-664.
  •  
  • 33. P. Nilges, T.R. dos Santos, F. Harnisch, and U. Schröder, Energy Environ. Sci. 5 (2012) 5231-5235.
  •  
  • 34. S. Liu, N. Govindarajan, H. Prats, and K. Chan, Chem. Catal. 2[5] (2022) 1100-1113.
  •  
  • 35. S. Wang, D. Ren, Y. Du, M. Zhang, N. Zhang, Y. Sun, and Z. Huo, Carbon Resour. Convers. 6[4] (2023) 287-297.
  •  
  • 36. C. Urban, J. Xu, H. Sträuber, T.R. dos Santos Dantas, J. Mühlenberg, C. Härtig, L.T. Angenent, and F. Harnisch, Energy Environ. Sci. 10[10] (2017) 2231-2244.
  •  
  • 37. K. Hiromori, Y. Konno, K. Katagami, A. Takahashi, and N. Shibasaki-Kitakawa, J. Chem. Eng. Jpn. 57[1] (2024) 2332621.
  •  
  • 38. J.E. Sanderson, P.F. Levy, L.K. Cheng, and G.W. Barnard, J. Electrochem. Soc. 130[9] (1983) 1844.
  •  
  • 39. N. Amri, Electroorg. Synth. Automated Flow Platform (Doctoral Dissertation, Cardiff University, 2021).
  •  
  • 40. S.D. Ross, M. Finkelstein, and E.J. Rudd, in “Anodic Oxidation: Organic Chemistry: A Series of Monographs” (Elsevier Press, 2013) Chapter 6.
  •  
  • 41. P. Hapiot and C. Lagrost, Chem. Rev. 108[7] (2008) 2238-2264.
  •  
  • 42. K. Aasberg-Petersen, E. Stenby, and A. Fredenslund, Ind. Eng. Chem. Res. 30[9] (1991) 2180-2185.
  •  
  • 43. A. Angulo, P. van der Linde, H. Gardeniers, M. Modestino, and D.F. Rivas, Joule 4[3] (2020) 555-579.
  •  
  • 44. M.N. Salehmin, T. Husaini, J. Goh, and A.B. Sulong, Energy Convers. Manag. 268 (2022) 115985.
  •  
  • 45. O. Hammerich and B. Speiser, in “Organic Electro­chemistry” (CRC Press, 2016).
  •  
  • 46. G. Hilt, Chem. Electro. Chem. 7[2] (2020) 395-405.
  •  
  • 47. K.I. Ataka, T. Yotsuyanagi, and M. Osawa, J. Phys. Chem. 100[25] (1996) 10664-10672.
  •  
  • 48. K. Pecková, J. Musilová, and J. Barek, Crit. Rev. Anal. Chem. 39[3] (2009) 148-172.
  •  
  • 49. A. Li, W. Duan, J. Liu, K. Zhuo, Y. Chen, and J. Wang, Sci. Rep. 8[1] (2018) 13141.
  •  
  • 50. G.H. de Kruijff, and S.R. Waldvogel, Chem. Electro. Chem. 6[16] (2019) 4180-4183.
  •  
  • 51. H. Nojima, T. Shimoda, S. Inagi, and T. Fuchigami, Isr. J. Chem. 64[1-2] (2024) e202300025.
  •  
  • 52. L. Cong, Y. Wu, N. Lin, X. Li, F. Liu, F. Han, J. Yang, C. Wang, and H. Lin, Chem. Eng. J. 480 (2024) 148331.
  •  
  • 53. X.L. Sun, C.X. Xia, Y. Ren, Y.J. Li, Z.Q. Cao, and L.G. Meng, Org. Chem. Front. 11[8] (2024) 2189-2194.
  •  
  • 54. S. Abdullaev, D. Singh, M.N. Al-Delfi, A. Kumar, Q.H. Aziz, A. Elawady, M.A. Al-Anber, A.H. Al-Rubaye, A. Ali, and N. Ahmad, Appl. Organomet. Chem. 38[5] (2024) e7425.
  •  
  • 55. H. He, Z. Lin, W. Guo, H. Zhang, H. Li, and W. Huang, Sep. Purif. Technol. 212 (2019) 802-821.
  •  
  • 56. P.E. Karthik, I. Alessandri, and A. Sengeni, J. Electrochem. Soc. 167 (2020) 125503.
  •  
  • 57. A. Iqbal, J. Zai, and Y. Zhang, in “Nanomaterials in Electro-organic Synthesis” (RSC Press, 2022) p.1-25.
  •  
  • 58. J.S. Choi, F.S. Simanjuntak, J.Y. Oh, K. Im Lee, S.D. Lee, M. Cheong, H.S. Kim, and H. Lee, J. Catal. 297 (2013) 248-255.
  •  
  • 59. E.L. Smith, A.P. Abbott, and K.S. Ryder, Chem. Rev. 114[21] (2014) 11060-11082.
  •  
  • 60. M. Kathiresan and D. Velayutham, Chem. Commun. 51[99] (2015) 17499-17516.
  •  
  • 61. C. Stang and F. Harnisch, Chem. Sus. Chem. 9[1] (2016) 50-60.
  •  
  • 62. P. Makoś, A. Przyjazny, and G. Boczkaj, J. Chromatogr. A 1570 (2018) 28-37.
  •  
  • 63. H. Qi, Y. Ren, S. Guo, Y. Wang, S. Li, Y. Hu, and F. Yan, ACS Appl. Mater. Interfaces 12[1] (2019) 591-600.
  •  
  • 64. A.K. Schweiger, N. Ríos-Lombardía, C.K. Winkler, S. Schmidt, F. Morís, W. Kroutil, J. González-Sabín, and R. Kourist, ACS Sustain. Chem. Eng. 7[19] (2019) 16364-16370.
  •  
  • 65. F.J. Holzhäuser, J.B. Mensah, and R. Palkovits, Green Chem. 22[2] (2020) 286-301.
  •  
  • 66. S. Pang, H. An, X. Zhao, and Y. Wang, Chin. J. Chem. Eng. 67 (2024) 9-15.
  •  
  • 67. Y. Li, L. Wang, Y. Cao, S. Xu, P. He, H. Li, and H. Liu, RSC Adv. 11[23] (2021) 14193-14202.
  •  
  • 68. R.G. Woolford, Can. J. Chem. 40[9] (1962) 1846-1850.
  •  
  • 69. C. Reufer, T. Lehmann, C. Weckbecker, inventors; Degussa GmbH, assignee, U.S. Patent App. US 10/546,135 (2006) 20 July.
  •  
  • 70. A. Fischer, H. Pütter, inventors; BASF SE, assignee, U.S. Patent US 7,192,512 (2007) 20 March.
  •  
  • 71. A.J. Bard, G. Inzelt, and F. Scholz, in “Electrochemical Dictionary” (Springer, 2012) p.1.
  •  
  • 72. T. Fuchigami, M. Atobe, and S. Inagi, in “Fundamentals and Applications of Organic Electrochemistry: Synthesis, Materials, Devices” (John Wiley & Sons, 2014).
  •  
  • 73. E.J. Horn, B.R. Rosen, and P.S. Baran, ACS central Sci. 2[5] (2016) 302-308.
  •  
  • 74. B.K. Malviya, E.C. Hansen, C.J. Kong, J. Imbrogno, J. Verghese, S.M. Guinness, C.A. Salazar, J.N. Desrosiers, C.O. Kappe, and D. Cantillo, Org. Process Res. Dev. 28[3] (2024) 790-797.
  •  
  • 75. E. Santillan‐Jimenez and M. Crocker, J. Chem. Technol. Biotechnol. 87[8] (2012) 1041-1050.
  •  
  • 76. L. Brakha and J.Y. Becker, Electrochim. Acta 77 (2012a) 143-149.
  •  
  • 77. L. Brakha and J.Y. Becker, Electrochim. Acta 59 (2012b) 135-139.
  •  
  • 78. N. Baumgarten, B.J. Etzold, J. Magomajew, and A. Ziogas, Chem. Open 11[10] (2022) e202200171.
  •  
  • 79. L.F. Rosa, K. Röhring, and F. Harnisch, Fuel 356 (2024) 129590.
  •  
  • 80. D. Pletcher, R.A. Green, and R.C. Brown, Chem. Rev. 118[9] (2017) 4573-91.
  •  
  • 81. M. Elsherbini and T. Wirth, Acc. Chem. Res. 52[12] (2019) 3287-96.
  •  
  • 82. T. Noël, Y. Cao, and G. Laudadio, Acc. Chem. Res. 52[10] (2019) 2858-69.
  •  
  • 83. N.C. Neyt and D.L. Riley, React. Chem. Eng. 6[8] (2021) 1295-326.
  •  
  • 84. D.K. Nguyen, F. Cameli, P. Dimitrakellis, and D.G. Vlachos, Ind. Eng. Chem. Res. 63[20] (2024) 9008-9017.
  •  
  • 85. V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J. Mayrhofer, C.A. Lucas, G. Wang, P.N. Ross, and N.M. Markovic, Nature Mater. 6[3] (2007) 241-247.
  •  
  • 86. G. Creusen, F.J. Holzhäuser, J. Artz, S. Palkovits, and R. Palkovits, ACS Sustainable Chem. Eng. 6[12] (2018) 17108-17113.
  •  
  • 87. G. Scandura, M. Sajjad, N. Singh, G. Palmisano, and J. Rodríguez, Appl. Catal. A Gen. 624 (2021) 118321.
  •  
  • 88. J.D. Wadhawan, F.J. Del Campo, R.G. Compton, J.S. Foord, F. Marken, S.D. Bull, S.G. Davies, D.J. Walton, and S. Ryley, J. Electroanal. Chem. 507[1-2] (2001) 135-143.
  •  
  • 89. Y. Qiu, J.A. Lopez-Ruiz, U. Sanyal, E. Andrews, O.Y. Gutiérrez, and J.D. Holladay, Appl. Catal. B: Environ. 277 (2020) 119277.
  •  
  • 90. K. Neubert, M. Schmidt, and F. Harnisch, Chem. Sus. Chem. 14[15] (2021) 3097-3109.
  •  
  • 91. P. Drögemüller, T. Stobbe and U. Schröder, Chem. Sus. Chem. 17[2] (2024) e202300973.
  •  
  • 92. G. Yuan, L. Wang, X. Zhang, R. Luque, and Q. Wang, ACS Sustain. Chem. Eng. 7[21] (2019) 18061-18066.
  •  
  • 93. G. Yuan, L. Wang, X. Zhang, R. Luque, and Q. Wang, Green Chem. 22[2] (2020) 525-531.
  •  
  • 94. S. Xu, X. Niu, G. Yuan, Z. Wang, S. Zhu, X. Li, Y. Han, R. Zhao, and Q. Wang, ACS Sustain. Chem. Eng. 9[15] (2021) 5288-5297.
  •  
  • 95. J.V. Macpherson, Phys. Chem. Chem. Phys. 17[5] (2015) 2935-2949.
  •  
  • 96. Y. Einaga, Acc. Chem. Res. 55[24] (2022) 3605-3615.
  •  
  • 97. S. Palkovits and R. Palkovits, Chem. Ing. Tech. 91[6] (2019) 699-706.
  •  
  • 98. T. Ashraf, A.P. Rodriguez, B.T. Mei, and G. Mul, Faraday Discuss. 247 (2023) 254-269.
  •  
  • 99. M. Ensch, C.A. Rusinek, M.F. Becker, and T. Schuelke, Water Environ. J. 35[1] (2021) 158-165.
  •  
  • 100. F.A. Zeidabadi, E.B. Esfahani, R. Moreira, S.T. McBeath, J. Foster, and M. Mohseni, Environ. Res. 246 (2024) 118103.
  •  
  • 101. C. Lin, Y. Maeda, K. Murase, and K. Fukami, Electrochem. Commun. 149 (2023) 107473.
  •  
  • 102. T. Kashiwada, T. Watanabe, Y. Ootani, Y. Tateyama, and Y. Einaga, ACS Appl. Mater. Interfaces 8[42] (2016) 28299-28305.
  •  
  • 103. S. Lips and S.R. Waldvogel, Chem. Electro. Chem. 6[6] (2019) 1649-1660.
  •  
  • 104. Y. Zhang, Z. Zhang, Z. Yu, A. Addad, Q. Wang, P. Roussel, S. Szunerits, and R. Boukherroub, ACS Appl. Mater. Interfaces 15[50] (2023) 58345-58355.
  •  
  • 105. A. Goryachev, M.E. Pascuzzi, F. Carla, T. Weber, H. Over, E.J. Hensen, and J.P. Hofmann, Electrochim. Acta 336 (2020) 135713.
  •  
  • 106. L.Å. Näslund, Á.S. Ingason, S. Holmin, and J. Rosen, J. Phys. Chem. C 118[28] (2014) 15315-15323.
  •  
  • 107. N. Ullah, I. Ali, M. Jansen, and S. Omanovic, Can. J. Chem. Eng. 93[1] (2015) 55-62.
  •  
  • 108. C.P. Rhodes, J.F. Godinez Salomon, L.A. Albiter, K.O. Bailey, Z.G. Naymik, F.A. Ospina Acevedo, and P.B. Balbuena, ECS Meet. Abstr. 242 (2022) 1649.
  •  
  • 109. F.A. Ospina Acevedo, P.B. Balbuena, J.F. Godinez Salomon, L.A. Albiter, K.O. Bailey, Z.G. Naymik, and C.P. Rhodes, ECS Meet. Abstr. 242 (2022) 1670.
  •  
  • 110. C. Wang, K. Liu, Y. Jin, S. Huang, and J. Chun‐Ho Lam, Chem. Sus. Chem. 16[16] (2023) e202300222.
  •  
  • 111. G. Creusen, F.J. Holzhäuser, J. Artz, S. Palkovits, and R. Palkovits, ACS Sustain. Chem. Eng. 6[12] (2018) 17108-17113.
  •  
  • 112. Y. Qiu, J.A. Lopez-Ruiz, G. Zhu, M.H. Engelhard, O.Y. Gutiérrez, and J.D. Holladay, Appl. Catal. B Environ. 305 (2022) 121060.
  •  
  • 113. V.N. Andreev, V.I. Bykov, V.A. Grinberg, A.G. Dedov, A.S. Loktev, N.A. Mayorova, I.I. Moiseev, and A.A. Stepanov, Russ. J. Electrochem. 49 (2013) 216-220.
  •  
  • 114. H. Ahmad, R. Pelosato, I.N. Sora, and F. Fontana, Chem. Eng. Trans. 98 (2023) 105-110.
  •  
  • 115. S. Abdullaev, D. Singh, M.N. Al‐Delfi, A. Kumar, Q.H. Aziz, A. Elawady, M.A. Al‐Anber, A.H. Al‐Rubaye, A. Ali, and N. Ahmad, Appl. Organomet. Chem. 38[5] (2024) e7425.
  •  
  • 116. J. Ranninger, P. Nikolaienko, K.J.J. Mayrhofer, and B.B. Berkes, Chem. Sus. Chem. 15 (2022) e202102228.
  •  
  • 117. C.L. Arnold, K.M. Beggs, D.J. Eyckens, F. Stojcevski, L. Servinis, and L.C. Henderson, Compos. Sci. Technol. 159 (2018) 135-141.
  •  
  • 118. A. Ambrosi and M. Pumera, Chem. Eur. J. 22[1] (2016) 153-159.
  •  
  • 119. H. Tomiyasu, H. Shikata, K. Takao, N. Asanuma, S. Taruta, and Y.Y. Park, Sci. Rep. 7 (2017) 45048.
  •  
  • 120. W.A. Swansborough-Aston, A. Soltan, B. Coulson, A. Pratt, V. Chechik, and R.E. Douthwaite, Green Chem. 25[3] (2023) 1067-1077.
  •  
  • 121. M. Chhetri, S. Sultan, and C.N. Rao, Proc. Natl. Acad. Sci. 114[34] (2017) 8986-8990.
  •  
  • 122. M. Wickramasinghe and I.Z. Kiss, J. Electrochem. Soc. 163[14] (2016) H1171.
  •  
  • 123. N. Sauermann, T.H. Meyer, C. Tian, and L. Ackermann, J. Am. Chem. Soc. 139[51] (2017) 18452-18455.
  •  
  • 124. M.A. Rahim, R.A. Hameed, and M.W. Khalil, J. Power Sources 134[2] (2004) 160-169.
  •  
  • 125. C.A. Mesa, A. Kafizas, L. Francàs, S.R. Pendlebury, E. Pastor, Y. Ma, F. Le Formal, M.T. Mayer, M. Grätzel, and J.R. Durrant, J. Am. Chem. Soc. 139[33] (2017) 11537-11543.
  •  
  • 126. J. Chaussard, J.C. Folest, J.Y. Nedelec, J. Perichon, S. Sibille, and M. Troupel, Synthesis 1990[05] (1990) 369-381.
  •  
  • 127. C. Rousseau, F. Baraud, L. Leleyter, and O. Gil, J. Hazard. Mater. 167[1-3] (2009) 953-958.
  •  
  • 128. W. Xu, J. Song, J. Sun, Y. Lu, and Z. Yu, ACS Appl. Mater. Interfaces 3[11] (2011) 4404-4414.
  •  
  • 129. K. Pecková, J. Musilová, and J. Barek, Crit. Rev. Anal. Chem. 39[3] (2009) 148-172.
  •  
  • 130. A. Li, W. Duan, J. Liu, K. Zhuo, Y. Chen, and J. Wang, Sci. Rep. 8[1] (2018) 13141.
  •  
  • 131. C. Amatore and A.R. Brown, J. Am. Chem. Soc. 118[6] (1996) 1482-1486.
  •  
  • 132. A.J. Bard, G. Inzelt, and F. Scholz, in “Electrochemical Dictionary” (Springer, 2012).
  •  
  • 133. J. Schneider, A. P. Häring, and S. R. Waldvogel, Chem. Eur. J. 30[30] (2024) e202400403.
  •  
  • 134. H. Lee, A Study of Kolbe Electrolysis Using High-Energy Facet Pt Electrode, Doctoral Dissertation (Hanyang University, 2024).
  •  
  • 135. R. Mathison, E. Rani, M.K. Patel, A.L. Cerrato, C.K. Bloomquist, and M.A. Modestino, Chem. Catal. 4[5] (2024) 100998.
  •  
  • 136. N. Teetz, D. Holtmann, F. Harnisch, and M. Stöckl, Angew. Chem. 134 (2022) e202210596.
  •  
  • 137. M.O. Nordkamp, B. Mei, R. Venderbosch, and G. Mul, Chem. Cat. Chem. 14[16] (2022) e202200438.
  •  
  • 138. K. Neubert, M. Hell, M. Chávez Morejón, and F. Harnisch, Chem. Sus. Chem. 15[21] (2022) e202201426.
  •  
  • 139. H. Soucie, M.O. Nordkamp, E. Faegh, M. Elam, G. Mul, and W. Mustain, ECS Meet. Abstr. 240 (2021) 75.
  •  
  • 140. T.R. dos Santos, P. Nilges, W. Sauter, F. Harnisch, and U. Schröder, RSC Adv. 5[34] (2015) 26634-26643.
  •  
  • 141. A. Ziogas, H. Pennemann, and G. Kolb, Electrocatalysis 11 (2020) 432-442.
  •  
  • 142. E. Steckhan, in “Electrochemical synthesis: bond formation at anode and cathode” (Springer,1990).
  •  
  • 143. E. Klocke, A. Matzeit, M. Gockeln, and H. J. Schäfer, Chem. Ber. 126[7] (1993) 1623-1630.
  •  
  • 144. C. Capello, U. Fischer, and K. Hungerbühler, Green Chem. 9[9] (2007) 927-934.
  •  
  • 145. J.F. Wilshire, Aust. J. Chem. 16[3] (1963) 432-439.
  •  
  • 146. M.M. Baizer and J.H. Stocker, J. Electrochem. Soc. 121[3] (1974) 134C.
  •  
  • 147. S. Joarder, D. Bansal, H. Meena, N. Kaushik, J. Tomar, K. Kumari, I. Bahadur, E.H. Choi, N.K. Kaushik, and P. Singh, J. Mol. Liq. 376 (2023) 121355.
  •  
  • 148. M. Quertenmont, I. Goodall, K. Lam, I. Markó, and O. Riant, Org. Lett. 22[5] (2020) 1771-1775.
  •  
  • 149. L. Eberson, J. Org. Chem. 27[7] (1962) 2329-2331.
  •  
  • 150. M. Kathiresan and D. Velayutham, Chem. Commun. 51[99] (2015) 17499-17516.
  •  
  • 151. P. Makoś, A. Przyjazny, and G. Boczkaj, J. Chromatogr. A 1570 (2018) 28-37.
  •  
  • 152. K. Scott, Dev. Chem. Eng. Miner. Process. 1[2-3] (1993) 71-117.
  •  
  • 153. A.K. Yadav, A. Jain, and R.A. Misra, Electrochim. Acta 27[4] (1982) 535-540.
  •  
  • 154. N. Ahad and A. de Klerk, Fuel 211 (2018) 415-419.
  •  
  • 155. D. Cantillo, Curr. Opin. Electrochem. 44 (2024) 101459.
  •  
  • 156. K. Arai, K. Watts, and T. Wirth, Chem. Open 3 (2014) 23-28.
  •  
  • 157. K. Watts, W. Gattrell, and T. Wirth, Beilstein J. Org. Chem. 7 (2011) 1108-1114.
  •  
  • 158. R. A. Green, R. C. D. Brown, and D. Pletcher, J. Flow Chem. 6 (2016) 191-197.
  •  
  • 159. N. Kurig, J. Meyers, F.J. Holzhauser, S. Palkovits, and R. Palkovits, ACS Sustain. Chem. Eng. 9 (2020) 1229-1234.
  •  
  • 160. J.D. Griffin, K.C. Harper, S. Velasquez Morales, W.H. Morrill, W. I. Thornton, D. Sutherland, and B.A. Greiner, Org. Process Res. Dev. 28 (2024) 1877-1885.
  •  
  • 161. C.P. Breen, A.M. Nambiar, T.F. Jamison, and K.F. Jensen, Trends Chem. 3 (2021) 373-386.
  •  
  • 162. P. Nikolaienko and K.J. Mayrhofer, Curr. Opin. Electrochem. 35 (2022) 101103.
  •  
  • 163. D.Z. Lin, G. Fang, and K. Liao, in “Machine Learning in Molecular Sciences” (Springer, 2023) p. 227-275.
  •  
  • 164. A. Jess and P. Wasserscheid, in “Chemical Technology: From Principles to Products” (John Wiley & Sons, 2020).
  •  
  • 165. W. R. Moomaw, Energy Policy 24 (1996) 951-968.
  •  
  • 166. Z.J. Schiffer and K. Manthiram, Joule 1 (2017) 10-14.
  •  
  • 167. P. De Luna, C. Hahn, D. Higgins, S.A. Jaffer, T.F. Jaramillo, and E. H. Sargent, Science 364 (2019) eaav3506.
  •  
  • 168. I. Ganesh, Renew. Sustain. Energy Rev. 59 (2016) 1269-1297.
  •  
  • 169. D.S. Mallapragada, Y. Dvorkin, M.A. Modestino, D.V. Esposito, W.A. Smith, B.M. Hodge, M.P. Harold, V.M. Donnelly, A. Nuz, C. Bloomquist, and K. Baker, Joule 7 (2023) 23-41.
  •  
  • 170. P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. Van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera and M. Belkacemi, in Climate Change 2022: Mitigation of Climate Change, Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2022) 9781009157926.
  •  
  • 171. C.K. Ho, K.B. McAuley, and B.A. Peppley, Renew. Sustain. Energy Rev. 113 (2019) 109261.
  •  
  • 172. G. Yuan, C. Wu, G. Zeng, X. Niu, G. Shen, L. Wang, X. Zhang, R. Luque, and Q. Wang, Chem. Cat. Chem 12 (2020) 642-648.
  •  
  • 173. M. Seko, Y. Yomiyama, and T. Isoya, Chem. Econ. Eng. Rev. 11 (1979) 48-50.
  •  
  • 174. C. P. Andrieux, F. Gonzalez, and J. M. Savéant, J. Am. Chem. Soc. 119 (1997) 4292-4300.
  •  
  • 175. D. Belanger and J. Pinson, Chem. Soc. Rev. 40 (2011) 3995-4048.
  •  
  • 176. H. Wendt, H. Vogt, G. Kreysa, M. Kolb, G.E. Engelmann, J.C. Ziegler, H. Goldacker, K. Juttner, U. Galla, H. Schmieder, and E. Steckhan, in “Ullmann's Encyclopedia of Industrial Chemistry” (Wiley, 2003) p.1.
  •  
  • 177. J. Lee, J. Chun, O. Choi, and B.-I. Sang, J. Ceram. Process. Res. 21, [5] (2020) 602-608.
  •  
  • 178. S. Kang, A. K. Mathew, A. Abraham, O. Choi, and B.-I. Sang, J. Ceram. Process. Res. 23, [6] (2022) 853-861.
  •  
  • 179. A. Udayan, S. Kang, and B.-I Sang, J. Ceram. Process. Res. 24[1] (2023) 29-39.
  •  
  • 180. J. Egerer, N. Farhang-Damghani, V. Grimm, and P. Runge, Appl. Energy 358 (2024) 122485.
  •  
  • 181. L. T. Angenent, I. Casini, U. Schröder, F. Harnisch, and B. Molitor, Energy Environ. Sci. 17 (2024) 3682-3699.
  •  
  • 182. A. Hassan, S. Z. Ilyas, A. Jalil, and Z. Ullah, Environ. Sci. Pollut. Res. 28 (2021) 21204-21211.
  •  
  • 183. P. J. Megia, A. J. Vizcaíno, J. A. Calles, and A. Carrero, Energy Fuels 35 (2021) 16403-16415.
  •  
  • 184. P. G. Levi and J. M. Cullen, Environ. Sci. Technol. 52 (2018) 1725-1734.
  •  
  • 185. M. Jiang, Y. Cao, C. Liu, D. Chen, W. Zhou, Q. Wen, H. Yu, J. Jiang, Y. Ren, S. Hu, and E. Hertwich, Nat. Commun. 15 (2024) 3854.
  •  
  • 186. L. R. López, P. Dessì, A. Cabrera-Codony, L. Rocha-Melogno, B. Kraakman, V. Naddeo, M. D. Balaguer, and S. Puig, Sci. Total Environ. 856 (2023) 159088.
  •  
  • 187. G. Centi and S. Perathoner, Catal. Today 387 (2022) 216–223.
  •  
  • 188. L. Puigjaner, M. Pérez-Fortes, A. Somoza-Tornos, and A. Espuña, Front. Energy Res. 9 (2021) 780533.
  •  

This Article

  • 2024; 25(6): 1087-1104

    Published on Dec 31, 2024

  • 10.36410/jcpr.2024.25.6.1087
  • Received on Nov 1, 2024
  • Revised on Nov 30, 2024
  • Accepted on Dec 5, 2024

Correspondence to

  • Byoung-In Sang
  • Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
    Tel : +82-2-2220-2328

  • E-mail: biosang@hanyang.ac.kr