Articles
  • Design and development of ceramic glaze flow tester with adjustable tilt angle
  • Ya-nan Xiu*

  • China Academy of Art, Hangzhou, China

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. J.D. Li, R.B. Dai, China Ceram. Ind. 12[02] (2012) 15-20.
  •  
  • 2. Y.G. Hu, China Ceram. 4 (2000) 15-19.
  •  
  • 3. International Organization for Standardization. Vitreous and porcelain enamels - Determination of fluidity behaviour - Fusion flow test. ISO 4534:2010(E). Geneva. ISO (2010).
  •  
  • 4. X.E. Zeng and J.P. Huang, China Standardization. 399[12] (2009) 37-39.
  •  
  • 5. Z.L. Wang, China Ceram. 5 (1985) 55-57.
  •  
  • 6. J.Y. Li, China Ceram. Ind. 24[01] (2017) 27-30.
  •  
  • 7. J.H. Ji, R.F. Ni, B.L. Wu, and J.A. Feng, Foundry (Shenyang, China) 5 (1983) 44-46.
  •  
  • 8. Y.Y. Zheng, J.D. Li, and C. Peng, Ceramics (Xianyang, China) 341[3] (2014) 57-59.
  •  
  • 9. R.N. Cai, Y.Y. Zheng, and D.Y. He, Ceramics (Xianyang, China) 240[8] (2010) 57-58.
  •  
  • 10. International Organization for Standardization, Monolithic (unshaped) refractory products - Part 4: Determination of consistency of castables. ISO 1927-4. Geneva. ISO (2012).
  •  
  • 11. International Organization for Standardization, Coating powders - Part 11: Inclined-plane flow test. ISO 8130-11. Geneva. ISO (1997).
  •  
  • 12. Light industry standard of the People's Republic of China, Test method for relative viscosity, relative liquidity and thixotropy of ceramic. QB/T 1545-2015. China (2015).
  •  
  • 13. Standard of the Ministry of Machinery and Electronics Industry of the People's Republic of China, Test method for fluidity of glass powder for low fusion welding, SJ/T 3232.3-1989. China (1989).
  •  
  • 14. Y. Long, Z.F. Yu, X. Wang, W.Q. Qian, and J. Li, Mater. Res. Appl. 17[3] (2023) 483-494.
  •  
  • 15. R.F. Liang, C.Y. Dai, X.C. Liu, X.T. Zhang, X.Y. Fan, and Y.Q. Li, (2022-03-08). A kind of adjustable Angle fixed bracket for solid matter determination. CN215962364U. Fujian Province, China.
  •  
  • 16. Z.M. Zhou, X.F. Song, Y.F. Chen, L.W. Tang, C. Liu, and Z.P. Xiao, Experimental Science and Technology 12[05] (2014) 1-2+7.
  •  
  • 17. P.F. Wang, Q. Gao, CN214405428U. (2021-10-15). A kind of operation table support with adjustable height and Angle. Shanghai, China.
  •  
  • 18. Y.B. Yang, CN213043624U. (2021-04-23). A solar energy Angle adjustable bracket. Tianjin, China.
  •  
  • 19. L.Q. Xiao, X.H. Li, S.H. He, and D. Xiang, CN219204410U. (2023-06-16). Modular photovoltaic bracket with adjustable Angle. Hunan Province, China.
  •  
  • 20. Z.H. Pang, Z.R. Feng, J.Y. Ma, X.L. Song, and G.Y. Pei, CN215990673U. (2022-03-08). A photovoltaic bracket with strong stability and adjustable tilt Angle. Guangdong Province, China.
  •  
  • 21. W.L. Zeng, CN113758831A. (2021-12-07). A device for making removable resin fluidity test piece and its test method. Guangdong Province, China.
  •  
  • 22. J.C. Ye, CN111721673B. (2022-08-09). A resin fluidity test fixture and its test method. Fujian Province, China.
  •  
  • 23. J.L. Liu, Refractories & lime (Anshan, China) 300[02] (2008) 26-27.
  •  
  • 24. C. Goegtas, N. Uenlue, A. Odabasi, L. Sezer, F. Cinar, S. Guener, and N. Eruslu, J. Ceram. Process. Res. 10[1] (2009) 43-48.
  •  
  • 25. H. Shao, Image Technol. (Tianjin, China) 29[03] (2017) 80-82.
  •  
  • 26. X.Q. Mao, Foshan Ceram. 23[07] (2013) 16-18.
  •  
  • 27. G.F. Sun, Brick and tile (Xi’an, China) 11 (2012) 145-149.
  •  
  • 28. X.Q. Mao, R.Q. Wu, T. Su, Z.J. Wu, and Y.F. Zhou, China Ceram. 08 (2008) 55-57.
  •  
  • 29. H. Yildizay, J. Ceram. Process. Res. 24[2] (2023) 237-241.
  •  
  • 30. Z.B. Ozturk and B. Yildiz, Glass Phys. Chem. 42 (2016) 257-262.
  •  
  • 31. E. Bou, J. Garcia-Ten, R. Pérez, S. Arrufat, and G. Atichian, Bol. Soc. Esp. Ceram. 49 (2010) 271-278.
  •  
  • 32. I.A. Levitskii and L.F. Papko, Glass Ceram. 67 (2011) 336-339.
  •  
  • 33. I.A. Severenkov, E.V. Ustyugova, L.A. Alekseeva, T.V. Zaichuk, and Y.A. Spiridonov, Glass Ceram. 78 (2021) 259-263.
  •  
  • 34. E. Kilinc, A.M. Bell, and P.A. Bingham, J. Am. Ceram. Soc. 104[8] (2021) 3921-3946.
  •  
  • 35. D.M. Liu, J. Mater. Sci. 35 (2000) 5503-5507.
  •  
  • 36. J.U. Eom, S. Kim, and J.H. Kim, J. Ceram. Process. Res. 22[5] (2021) 568-575.
  •  
  • 37. N.M. Khalil, M.M.S. Wahsh, and A. Gaber, J. Ceram. Process. Res. 17[5] (2016) 478-484.
  •  
  • 38. B.E. Yekta, P. Alizadeh, and L. Rezazadeh, J. Eur. Ceram. Soc. 27[5] (2007) 2311-2315.
  •  
  • 39. D. Lee, H.S. Hong, H. Jeong, and S.S. Ryu, J. Ceram. Process. Res. 23[2] (2022) 149-153.
  •  

This Article

  • 2023; 24(5): 868-873

    Published on Oct 31, 2023

  • 10.36410/jcpr.2023.24.5.868
  • Received on Jul 28, 2023
  • Revised on Aug 13, 2023
  • Accepted on Sep 17, 2023

Correspondence to

  • Ya-nan Xiu
  • China Academy of Art, Hangzhou, China
    Tel : +86 13575784295

  • E-mail: xyn-nanzi@163.com