Articles
  • Autotrophic and mixotrophic culture of electro-active microalgae with electron supplied from electrodes for CO2 conversion
  • Aswathy Udayan#, Seongcheol Kang# and Byoung-In Sang*

  • Department of Chemical Engineering, Hanyang University, 222 Wangshimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. H. Sun, W. Zhao, X. Mao, Y. Li, T. Wu, and F. Chen, Biotechnol. Biofuels 11[1] (2018) 1-23.
  •  
  • 2. Y. Kim and S. Lee, J. Ceram. Process. Res. 18[4] (2017) 285-290.
  •  
  • 3. C. Koch and F. Harnisch, Front. Microbiol. 7 (2016) 1890.
  •  
  • 4. O. Choi and B.I. Sang, Biotechnol. Biofuels 9[1] (2016) 1-14.
  •  
  • 5. B.S. Koh and S.C. Yi, J. Ceram. Process. Res. 18[11] (2017) 810-814.
  •  
  • 6. J. Lee, J. Chun, O. Choi, and B.I. Sang, J. Ceram. Process. Res. 21[5] (2020) 602-608.
  •  
  • 7. L. Shi, H. Dong, G. Reguera, H. Beyenal, A. Lu, J. Liu, H.Q. Yu, and J.K. Fredrickson, Nat. Rev. Microbiol. 14[10] (2016) 651-662.
  •  
  • 8. M. Cuaresma, M. Janssen, C. Vílchez, and R.H. Wijffels, Bioresour. Technol. 102[8] (2011) 5129-5137.
  •  
  • 9. C. Liu, B.C. Colón, M. Ziesack, P.A. Silver, and D.G. Nocera, Science 352[6290] (2016) 1210-1213.
  •  
  • 10. A. Melis, L. Zhang, M. Forestier, M.L. Ghirardi, and M. Seibert, Plant Physiol. 122[1] (2000) 127-136.
  •  
  • 11. S. Subramanian, A.N. Barry, S. Pieris, and R.T. Sayre, Biotechnol. Biofuels 6[1] (2013) 1-12.
  •  
  • 12. T. Nakajima, H. Hanawa, and T. Tsuchiya, J. Ceram. Process. Res. 17[5] (2016) 485-488.
  •  
  • 13. K.S. Vuoristo, A.E. Mars, J.P. Sanders, G. Eggink, and R.A. Weusthuis, Trends Biotechnol. 34[3] (2016) 191-197.
  •  
  • 14. K. Qiao, T.M. Wasylenko, K. Zhou, P. Xu, and G. Stephanopoulos, Nat. Biotechnol. 35[2] (2017) 173-177.
  •  
  • 15. P.M. Shrestha and A.E. Rotaru, Front. Microbiol. 5 (2014) 237-237.
  •  
  • 16. D. Gupta, M.C. Sutherland, K. Rengasamy, J.M. Meacham, R.G. Kranz, and A. Bose, mBio 10[6] (2019) e02668-02619.
  •  
  • 17. W. Wunderlich, T. Oekermann, L. Miao, N.T. Hue, S. Tanemura, and M. Tanemura, J. Ceram. Process. Res. 5[4] (2004) 343-354.
  •  
  • 18. S. Chinnasamy and S. Ramanathan, J. Cerm. Process. Res. 21[1] (2020) 123-130.
  •  
  • 19. J.H. De Vree, R. Bosma, M. Janssen, M.J. Barbosa, and R.H. Wijffels, Biotechnol. Biofuels 8[1] (2015) 1-12.
  •  
  • 20. G. Perin, A. Bellan, A. Bernardi, F. Bezzo, and T. Morosinotto, Physiol. Plant. 166[1] (2019) 380-391.
  •  
  • 21. Y. Chisti, in “Algae Biotechnol.” (Springer, 2016) 21-40.
  •  
  • 22. E. Sforza, D. Simionato, G.M. Giacometti, A. Bertucco, and T. Morosinotto, PLoS ONE 7[6] (2012) e38975.
  •  
  • 23. N. Murata, S. Takahashi, Y. Nishiyama, and S.I. Allakhverdiev, Biochimica et Biophysica Acta (BBA)-Bioenergetics 1767[6] (2007) 414-421.
  •  
  • 24. Y. Kato, X. Sun, L. Zhang, and W. Sakamoto, Plant Physiol. 159[4] (2012) 1428-1439.
  •  
  • 25. P. Kuczynska, M. Jemiola Rzeminska, and K. Strzalka, Mar. Drugs. 13[9] (2015) 5847-5881.
  •  
  • 26. R. Goss and T. Jakob, Photosynth. Res. 106[1] (2010) 103-122.
  •  
  • 27. L. Nikkanen, D. Solymosi, M. Jokel, and Y. Allahverdiyeva, Physiol. Plant. (2021).
  •  
  • 28. C.W. Mullineaux, Biochimica et Biophysica Acta (BBA) - Bioenergetics 1837[4] (2014) 503-511.
  •  
  • 29. M. Marappan, M.K. Vijaykrishananb, K. Palaniswamy, K. Manoharan, and J. Arumughan, J. Ceram. Process. Res. 22[2] (2021) 131-142.
  •  
  • 30. M.S. Guzman, K. Rengasamy, M.M. Binkley, C. Jones, T.O. Ranaivoarisoa, R. Singh, D.A. Fike, J.M. Meacham, and A. Bose, Nature Commun. 10[1] (2019) 1-13.
  •  
  • 31. L.E. Doyle and E. Marsili, Bioresour. Technol. 195 (2015) 273-282.
  •  
  • 32. S.V. Mohan, S. Srikanth, P. Chiranjeevi, S. Arora, and R. Chandra, Bioresour. Technol. 166 (2014) 566-574.
  •  
  • 33. L. Xiao and Z. He, Renew. Sust. Energ Rev. 37 (2014) 550-559.
  •  
  • 34. L. Xiao, E.B. Young, J.A. Berges, and Z. He, Environ. Sci. Technol. 46[20] (2012) 11459-11466.
  •  
  • 35. L. Christenson and R. Sims, Biotechnol. Adv. 29[6] (2011) 686-702.
  •  
  • 36. M. Karthikeyan, M. Muthukumar, P.Karthikeyan, and C. Mathan. J. Ceram. Process. Res. 20[5] (2019) 490-498.
  •  
  • 37. A. Commault, G. Lear, P. Novis, and R. Weld, N.Z.J. Bot. 52[1] (2014) 48-59.
  •  
  • 38. G.V. Subhash, R. Chandra, and S.V. Mohan, Bioresour. Technol. 136 (2013) 644-653.
  •  
  • 39. L. Taiz, E. Zeiger, I.M. Moller, and A. Murphy, in “Plant physiology and development” (Sinauer Associates Incorporated, 2015) p.165-196.
  •  
  • 40. S. Smetana, M. Sandmann, S. Rohn, D. Pleissner, and V. Heinz, Bioresour. Technol. 245 (2017) 162-170.
  •  
  • 41. A. Lodi, L. Binaghi, D. De Faveri, J.C.M. Carvalho, and A. Converti, Ann. Microbiol. 55[3] (2005) 181-185.
  •  
  • 42. G. Zuccaro, A. Yousuf, A. Pollio, and J.P. Steyer, in “Microalgae cultivation for biofuels production” (Academic Press, 2020) p.11-29.
  •  
  • 43. C. Yang, Q. Hua, and K. Shimizu, Biochem. Eng. J. 6[2] (2000) 87-102.
  •  
  • 44. Y. Alkhamis and J.G. Qin, J. Appl. Phycol. 28[1] (2016) 35-42.
  •  
  • 45. J. Zhan, J. Rong, and Q. Wang, Int. J. Hydrog. Energy 42[12] (2017) 8505-8517.
  •  
  • 46. M.I. Pereira, B.M. Chagas, R. Sassi, G.F. Medeiros, E.M. Aguiar, L.H. Borba, E.P. Silva, J.C.A. Neto, and A.H. Rangel, PLoS ONE 14[10] (2019) e0224294.
  •  
  • 47. Y. Liang, N. Sarkany, and Y. Cui, Biotechnol. Lett. 31[7] (2009) 1043-1049.
  •  
  • 48. Perez-Garcia and Y. Bashan, in “Algal biorefineries” (Springer, 2015) p.61-131.
  •  
  • 49. Oliveira, S. Gianesella, V. Silva, T. Mata, and N. Caetano, Energy Procedia 136 (2017) 468-473.
  •  
  • 50. W.B. Kong, H. Yang, Y.T. Cao, H. Song, S.F. Hua, and C.G. Xia, Food Technol. Biotechnol. 51[1] (2013) 62.
  •  
  • 51. R. Karthikeyan, R. Singh, and A. Bose, J. Ind. Microbiol. Biotechnol. 46[9-10] (2019) 1419-1426.
  •  
  • 52. L.T. Wey, P. Bombelli, X. Chen, J.M. Lawrence, C.M. Rabideau, S.J. Rowden, J.Z. Zhang, and C.J. Howe, Chem. Electro. Chem. 6[21] (2019) 5375.
  •  
  • 53. T. Ogawa and H. Mi, Photosynth. Res. 93[1-3] (2007) 69-77.
  •  
  • 54. D.J. Lea Smith, N. Ross, M. Zori, D.S. Bendall, J.S. Dennis, S.A. Scott, A.G. Smith, and C.J. Howe, Plant Physiol. 162[1] (2013) 484-495.
  •  
  • 55. A. Udayan, A.K. Pandey, P. Sharma, N. Sreekumar, and S. Kumar, Systems Microbiology and Biomanufacturing 1[4] (2021) 411-431.
  •  
  • 56. F. Wang, Y. Gu, J.P. O'Brien, S.M. Yi, S.E. Yalcin, V. Srikanth, C. Shen, D. Vu, N.L. Ing, A.I. Hochbaum, E.H. Egelman, and N.S. Malvankar, Cell 177[2] (2019) 361-369.
  •  
  • 57. K. Senturk and M. Yilmaz, MedFAR 3[1] (2021) 1-9.
  •  
  • 58. V. Hartmann, D. Harris, T. Bobrowski, A. Ruff, A. Frank, T.G. Pomorski, M. Rogner, W. Schuhmann, N. Adir, and M.M. Nowaczyk, J. Mater. Chem. 8[29] (2020) 14463-14471.
  •  
  • 59. H. Kowata, S. Tochigi, H. Takahashi, and S. Kojima, J. Bacteriol. 199[19] (2017).
  •  
  • 60. B.E. Logan, in “Microbial fuel cells” (John Wiley & Sons, 2008) p.61-84.
  •  
  • 61. G. Longatte, A. Sayegh, J. Delacotte, F. Rappaport, F.A. Wollman, M. Guille Collignon, and F. Lemaitre, Chem. Sci. 9[43] (2018) 8271-8281.
  •  
  • 62. R.L. Heydorn, C. Engel, R. Krull, and K. Dohnt, Chem. Bio. Eng. Rev. 7[1] (2020) 4-17.
  •  
  • 63. Y. Zhang, Z. Zhang, W. Liu, and Y. Chen, Sci. Total Environ. 744 (2020) 140652.
  •  
  • 64. W. Huang, J. Chen, Y. Hu, J. Chen, J. Sun, and L. Zhang, Int. J. Hydrog. Energy 42[4] (2017) 2349-2359.
  •  
  • 65. Q. Liu, K. Yu, P. Yi, W. Cao, X. Chen, and X. Zhang, Environ. Sci. Pollut. Res. Int. 26[19] (2019) 19540-19548.
  •  
  • 66. P. Dessi, P. Chatterjee, S. Mills, M. Kokko, A.M. Lakaniemi, G. Collins, and P.N.L. Lens, Bioresour. Technol. 294 (2019) 122115.
  •  
  • 67. B.E. Logan, R. Rossi, A.a. Ragab, and P.E. Saikaly, Nat. Rev. Microbiol. 17[5] (2019) 307-319.
  •  
  • 68. A. Prevoteau, J.M. Carvajal Arroyo, R. Ganigue, and K. Rabaey, Curr. Opin. Biotechnol. 62 (2020) 48-57.
  •  
  • 69. M. Dopson, G. Ni, and T.H. Sleutels, FEMS Microbiol. Rev. 40[2] (2015) 164-181.
  •  
  • 70. J.R. Mattar, M.F. Turk, M. Nonus, N.I. Lebovka, H. El Zakhem, and E. Vorobiev, Bioelectrochemistry 103 (2015) 92-97.
  •  
  • 71. Y. Hayashi and K. Sugawara, Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 89[4] (2014) 042714.
  •  
  • 72. H. Nezammahalleh, F. Ghanati, T.A. Adams, M. Nosrati, and S.A. Shojaosadati, Bioresour. Technol. 218 (2016) 700-711.
  •  
  • 73. T. Kotnik, W. Frey, M. Sack, S.H. Meglic, M. Peterka, and D. Miklavcic, Trends Biotechnol. 33[8] (2015) 480-488.
  •  
  • 74. Y.H. Yun, I.R. Jo, Y.H. Lee, V.H.V. Quy, and K.S. Ahn, J. Ceram. Process. Res. 21 (2020) 33-40.
  •  
  • 75. A. Golberg, M. Sack, J. Teissie, G. Pataro, U. Pliquett, G. Saulis, T. Stefan, D. Miklavcic, E. Vorobiev, and W. Frey, Biotechnol. Biofuels 9[1] (2016) 1-22.
  •  
  • 76. A. Golberg, M. Sack, J. Teissie, G. Pataro, U. Pliquett, G. Saulis, T. Stefan, D. Miklavcic, E. Vorobiev, and W. Frey, Biotechnol. Biofuels 9[1] (2016) 1-22.
  •  
  • 77. H. Wang, D. Liu, L. Lu, Z. Zhao, Y. Xu, and F. Cui, Bioresour. Technol. 116 (2012) 80-85.
  •  
  • 78. A.E. Inglesby, D.A. Beatty, and A.C. Fisher, Rsc Advances 2[11] (2012) 4829-4838.
  •  
  • 79. K. Nishio, K. Hashimoto, and K. Watanabe, Biosci. Biotechnol. Biochem. (2013) 120833.
  •  
  • 80. N. Rashid, Y.F. Cui, M.S.U. Rehman, and J.I. Han, Sci. Total Environ. 456 (2013) 91-94.
  •  
  • 81. Y. Cui, N. Rashid, N. Hu, M.S.U. Rehman, and J.I. Han, Energy convers. Manage. 79 (2014) 674-680.
  •  
  • 82. S.B. Velasquez‐Orta, T.P. Curtis, and B.E. Logan, Biotechnol. Bioeng. 103[6] (2009) 1068-1076.
  •  
  • 83. V. Gadhamshetty, D. Belanger, C.J. Gardiner, A. Cummings, and A. Hynes, Bioresour. Technol. 127 (2013) 378-385.
  •  
  • 84. Y. Cho, T. Donohue, I. Tejedor, M. Anderson, K. McMahon, and D. Noguera, J. Appl. Microbiol. 104[3] (2008) 640-650.
  •  
  • 85. J.P. Badalamenti, C.I. Torres, and R. Krajmalnik‐Brown, Biotechnol. Bioeng. 111[2] (2014) 223-231.
  •  
  • 86. D. Xing, Y. Zuo, S. Cheng, J.M. Regan, and B.E. Logan, Environ. Sci. Technol. 42[11] (2008) 4146-4151.
  •  
  • 87. A. Kokabian and V.G. Gude, Environ. Sci: Process. Impacts 15[12] (2013) 2178-2185.
  •  
  • 88. Y. Zhang, J.S. Noori, and I. Angelidaki, Energy Environ. Sci. 4[10] (2011) 4340-4346.
  •  
  • 89. P.J. Cai, X. Xiao, Y.R. He, W.W. Li, G.L. Zang, G.P. Sheng, M.H.W. Lam, L. Yu, and H.Q. Yu, Biosens. Bioelectron. 39[1] (2013) 306-310.
  •  
  • 90. Y. Wu, Z.J. Wang, Y. Zheng, Y. Xiao, Z.H. Yang, and F. Zhao, Appl. Energy 116 (2014) 86-90.
  •  
  • 91. X.A. Walter, J. Greenman, and I.A. Ieropoulos, Algal Res. 2[3] (2013) 183-187.
  •  

This Article

  • 2023; 24(1): 29-39

    Published on Feb 28, 2023

  • 10.36410/jcpr.2023.24.1.29
  • Received on May 25, 2022
  • Revised on Jul 12, 2022
  • Accepted on Jul 21, 2022

Correspondence to

  • Byoung-In Sang
  • Department of Chemical Engineering, Hanyang University, 222 Wangshimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
    Tel : +82-2-2220-2328 Fax: +82-2-2220-4716

  • E-mail: biosang@hanyang.ac.kr