Articles
  • Effect of TiO2 photoelectrode thickness on the performance of dye-sensitized solar cells
  • Woon-Yong Parka and Ki-Tae Leea,b,c,*

  • aDivision of Advanced Materials Engineering, Jeonbuk National University, Jeonbuk 54896, Republic of Korea
    bDepartment of Energy Storage/Conversion Engineering of Graduate School, Jeonbuk National University, Jeonbuk 54896, Republic of Korea
    cHydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonbuk 54896, Republic of Korea

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. B. O'Regan and M. Grätzel, Nature 353[6346] (1991) 737-740.
  •  
  • 2. P. Ramasamy, M.-S. Kang, H.-J. Cha, J. Kim, Mater. Res. Bull. 48[1] (2013) 79-83.
  •  
  • 3. L. Zhao, J. Yu, J. Fan, P. Zhai, S. Wang, Electrochem. Commun. 11[10] (2009) 2052-2055.
  •  
  • 4. S.K. Park, C. Chung, D.-H. Kim, C. Kim, S.-J. Lee, Y.S. Han, Mater. Res. Bull. 47[10] (2012) 2722-2725.
  •  
  • 5. M. Gratzel. Nature 414[6861] (2001) 338-344.
  •  
  • 6. K. Patil, S. Rashidi, H. Wang, W. Wei, Int. J. Photoenergy 2019 (2019) Article ID 1812879.
  •  
  • 7. J.H. Kim, K.J. Lee, J.H. Roh, S.W. Song, J.H. Park, I.H. Yer, B.M. Moon, Nano. Res. Lett. 7 (2012)1-12.
  •  
  • 8. M.U. Rahman, M. Wei, F. Xie, M. Khan, Catalysts 9[3] (2019) 273.
  •  
  • 9. R. Kasaudhan, H. Elbohy, S. Sigdel, H. Qiao, Q. Wei, Q. Qiao, IEEE Electron Device Lett. 35[5] (2014) 578-580.
  •  
  • 10. P. Sanjay, I. Isaivani, K. Deepa, J. Madhavan, S. Senthil, Mater. Lett. 244 (2019) 142-146.
  •  
  • 11. R. Vittal, K.-C. Ho, Renewable Sustainable Energy Rev. 70 (2017) 920-935.
  •  
  • 12. N.I. Beedri, P.K. Baviskar, V.P. Bhalekar, C.V. Jagtap, Inamuddin, A.M. Asiri, S.R. Jadkar, H.M. Pathan, Phys. Status Solidi A 215[18] (201) 1800236.
  •  
  • 13. J.-J. Lee, M.M. Rahman, S. Sarker, N.C.D. Nath, A.J.S. Ahammad, J.K. Lee, Adv. Compos. Mater. Med. Nanotechnol. 182 (2011) 210-218.
  •  
  • 14. S.N.F. Zainudin, H. Abdullah, M. Markom, J. Mater. Sci. 30[6] (2019) 5342-5356.
  •  
  • 15. B. Roose, S. Pathak, U. Steiner, Chem. Soc. Rev. 44[22] (2015) 8326-8349.
  •  
  • 16. C.C. Raj, R. Prasanth, J. Power Sources 317 (2016) 120-132.
  •  
  • 17. H.-W. Lin, Y.-S. Wang, Z.-Y. Huang, Y.-M. Lin, C.-W. Chen, S.-H. Yang, K.-L. Wu, Y. Chi, S.-H. Liu, P.-T. Chou, Phys. Chem. Chem. Phys. 14[41] (2012) 14190-14195.
  •  
  • 18. J.A. Anta, F. Casanueva, G. Oskam, J. Phys. Chem. B 110[11] (2006) 5372-5378.
  •  
  • 19. K.-M. Lee, V. Suryanarayanan, K.-C. Ho, Sol. Energy Mater. Sol. Cells 90[15] (2006) 2398-2404.
  •  
  • 20. K. Zhu, N. Kopidakis, N.R. Neale, J. van de Lagemaat, A.J. Frank, J. Phys. Chem. B 110[50] (2006) 25174-25180.
  •  
  • 21. K. Zhu, S.-R. Jang, A.J. Frank, J. Phys. Chem. Lett. 2[9] (2011) 1070-1076.
  •  
  • 22. S.R. Raga, E.M. Barea, F. Fabregat-Santiago, J. Phys. Chem. Lett. 3[12] (2012) 1629-1634.
  •  
  • 23. P. Wen, Y. Han, W. Zhao, Int. J. Photoenergy 2012 (2012) Article ID 906198.
  •  
  • 24. F. De Angelis, S. Fantacci, E. Mosconi, M.K. Nazeeruddin, M. Grätzel, J. Phys. Chem. C 115[17] (2011) 8825-8831.
  •  
  • 25. V. Baglio, M. Girolamo, V. Antonucci, A.S. Aricò, Int. J. Electrochem. Sci 6[8] (2011) 3375-3384.
  •  
  • 26. M.G. Kang, K.S. Ryu, S.H. Chang, N.G. Park, J.S. Hong, K.-J. Kim, Bull. Korean Chem. Soc. 25[5] (2004) 742-744.
  •  
  • 27. S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, S. Yanagida, J. Phys. Chem. B 106[39] (2002) 10004-10010.
  •  
  • 28. S.N. Karthick, K.V. Hemalatha, C.J. Raj, H.-J. Kim, M. Yi, J. Ceram. Proc. Res. 13[S1] (2012) 136-139.
  •  
  • 29. A. Aboulouard, B. Gultekin, M. Can, M. Erol, A. Jouaiti, B. Elhadadi, C. Zafer, S. Demic, J. Mat. Res. Tech. 9[2] (2020) 1569-1577.
  •  
  • 30. Y. Kim, B.J. Yoo, R. Vittal, Y. Lee, N.-G. Park, K.-J. Kim, J. Power Sources 175[2] (2008) 914-919.
  •  
  • 31. D. Kim, K. Lee, H. Lee, J. Lim, J. Park, J. Kor. Cryst. Growth and Cryst. Tech. 30[2] (2020) 61-65.
  •  
  • 32. J. Bisquert, M. Grätzel, Q. Wang, F. Fabregat-Santiago, J. Phys. Chem. B 110[23] (2006) 11284-11290.
  •  
  • 33. J. Bisquert, J. Phys. Chem. B 106[2] (2002) 325-333.
  •  
  • 34. F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S.M. Zakeeruddin, M. Grätzel, J. Physic. Chem. C 111[17] (2007) 6550-6560.
  •  

This Article

  • 2021; 22(5): 584-589

    Published on Oct 31, 2021

  • 10.36410/jcpr.2021.22.5.584
  • Received on May 7, 2021
  • Revised on Jul 5, 2021
  • Accepted on Jul 17, 2021

Correspondence to

  • Ki-Tae Lee
  • aDivision of Advanced Materials Engineering, Jeonbuk National University, Jeonbuk 54896, Republic of Korea
    bDepartment of Energy Storage/Conversion Engineering of Graduate School, Jeonbuk National University, Jeonbuk 54896, Republic of Korea
    cHydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonbuk 54896, Republic of Korea
    Tel : +82-63-270-2290 Fax: +82-63-270-2386

  • E-mail: ktlee71@jbnu.ac.kr