Articles
  • Characterization of NiFe2O4/Ce0.9Gd0.1O1.95 composite as an oxygen carrier material for chemical looping hydrogen production
  • Jong Ha Hwanga and Ki-Tae Leeb,c,*

  • aDepartment of Mineral Resources & Energy Engineering, Jeonbuk National University, Jeonbuk, 54896 Republic of Korea
    bDivision of Advanced Materials Engineering, Jeonbuk National University, Jeonbuk, 54896 Republic of Korea
    cHydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonbuk, 54896 Republic of Korea

References
  • 1. K.S. Go, S.R. Son, S.D. Kim, K.S. Kang, and C.S. Park, Int. J. Hydrogen Energy 34[3] (2009) 1301-1309.
  •  
  • 2. R.D. Solunke and G. Veser, Ind. Eng. Chem. Res. 49[21] (2010) 11037-11044.
  •  
  • 3. S. Dunn, Int. J. Hydrogen Energy 27[3] (2002) 235-264.
  •  
  • 4. M. Momirlan and T.N. Veziroglu, Renew. Sust. Energ. Rev. 6[1-2] (2002) 141-179.
  •  
  • 5. IPCC, in 2014: Climate Change 2014: Synthesis Report, 2015, edited by Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N. K., Edenhofer, O., Elgizouli, I., Field, C. B., Forster, P., Friedlingstein, P., Fuglestvedt, J., Gomez-Echeverri, L., Hallegatte, S., Hegerl, G., Howden, M., Jiang, K., Jimenez Cisneroz, B., Kattsov, V., Lee, H., Mach, K. J., Marotzke, J., Mastrandrea, M. D., Meyer, L., Minx, J., Mulugetta, Y., O'Brien, K., Oppenheimer, M., Pereira, J. J., Pichs-Madruga, R., Plattner, G.-K., Pörtner, Hans-Otto , Power, S. B., Preston, B., Ravindranath, N. H., Reisinger, A., Riahi, K., Rusticucci, M., Scholes, R., Seyboth, K., Sokona, Y., Stavins, R., Stocker, T. F., Tschakert, P., van Vuuren, D. and van Ypserle, J.-P., Intergovernmental Panel on Climate Change Press (2015) p.151.
  •  
  • 6. S.A. Rackley, in “Carbon Capture and Storage 2nd Edition” (Butterworth-Heinemann Press, 2017) p.22.
  •  
  • 7. D.Y.C. Leung, G. Caramanna, and M.M. Maroto-Valer, Renew. Sust. Energ. Rev. 39 (2014) 426-443.
  •  
  • 8. J. Gibbins and H. Chalmers, Energy Policy 36[12] (2008) 4317-4322.
  •  
  • 9. V.J. Aston, B.W. Evanko, and A.W. Weimer, Int. J. Hydrogen Energy 38[22] (2013) 9085-9096.
  •  
  • 10. P. Gupta, L.G. Velazquez-Vargas, and L.S. Fan, Energy Fuels 21[5] (2007) 2900-2908.
  •  
  • 11. L.F. de Diego, M. Ortiz, F. García-Labiano, J. Adánez, A. Abad, and P. Gayán, J. Power Sources 192[1] (2009) 27-34.
  •  
  • 12. M. Luo, Y. Yi, S. Wang, Z. Wang, M. Du, J. Pan, and Q. Wang, Renew. Sust. Energ. Rev. 81 (2018) 3186-3214.
  •  
  • 13. L. Protasova and F. Snijkers, Fuel 181 (2016) 75-93.
  •  
  • 14. F. Li, H.R. Kim, D. Sridhar, F. Wang, L. Zeng, J. Chen, and L.-S. Fan, Energy Fuels 23[8] (2009) 4182-4189.
  •  
  • 15. Z. Huang, F. He, Y. Feng, K. Zhao, A. Zheng, S. Chang, G. Wei, Z. Zhao, and H. Li, Energy Fuels 28[1] (2014) 183-191.
  •  
  • 16. M. Rydén and M. Arjmand, Int. J. Hydrogen Energy 37[6] (2012) 4843-4854.
  •  
  • 17. J.R. Scheffe, M.D. Allendorf, E.N. Coker, B.W. Jacobs, A.H. McDaniel, and A.W. Weimer, Chem. Mater. 23[8] (2011) 2030-2038.
  •  
  • 18. S. Yang, K. Kim, J.I. Baek, J.W. Kim, J.B. Lee, C.K. Ryu, and G. Lee, Energy Fuels 26[7] (2012) 4617-4622.
  •  
  • 19. Y.L. Kuo, W.M. Hsu, P.C. Chiu, Y.H. Tseng, and Y. Ku, Ceram. Int. 39[5] (2013) 5459-5465.
  •  
  • 20. Y.M. Choi, H. Abernathy, H.-T. Chen, M.C. Lin, and M. Liu, Chem. Phys. Chem. 7 (2006) 1957-1963.
  •  
  • 21. C. Sun, H. Li, and L. Chen, Energy Environ. Sci. 5 (2012) 8475-8505.
  •  
  • 22. G. Chen, G. Guan, Y. Kasai, and A. Abudula, Int. J. Hydro. Energy 37 (2012) 477-483.
  •  
  • 23. S. Liu, F. He, Z. Huang, A. Zheng, Y. Feng, Y. Shen, H. Li, H. Wu, and P. Glarborg, Energy Fuels 30 (2016) 4251-4262.
  •  
  • 24. K. Svoboda, A. Siewiorek, D. Baxter, J. Rogut, M. Puncochar, Chem. Pap. 61(2) (2007) 110-120.
  •  
  • 25. T. Yamashita and P. Hayes, Appl. Surf. Sci. 254 (2008) 2441-2449.
  •  
  • 26. J.K. Dey, A. Chatterjee, S. Majumdar, A.-C. Dippel, O. Gutowski, M.V. Zimmermann, and S. Giri, Phys. Rev. B 99 (2019) 144412.
  •  
  • 27. T.S.T. Saharuddin, F. Salleh, A. Samsuri, R. Othaman, and M.A. Yarmo, Int. J. Chem. Eng. Appl. 6 (2015) 405-409.
  •  
  • 28. G. Neri, A.M. Visco, S. Galvagno, A. Donato, and M. Panzalorto, Thermochim. Acta 329 (1999) 39-46.
  •  
  • 29. X. Zhu, H. Wang, Y. Wei, K. Li, and X. Cheng, J. Rare Earths 28 (2010) 907-913.
  •  
  • 30. F. Mahmoodi, S.H. Najibi, and A. Shariati, J. Am. Sci. 8[11] (2012) 453-459.
  •  
  • 31. Y.M. Choi, H. Abernathy, H.-T. Chen, M.C. Lin, and M. Liu, Chem. Phys. Chem. 7 (2006) 1957-1963.
  •  
  • 32. Z. Gu, K. Li, S. Qing, X. Zhu, Y. Wei, Y. Li, and H. Wang, RSC Adv. 4 (2014) 47191-47199.
  •  

This Article

  • 2020; 21(2): 148-156

    Published on Apr 30, 2020

  • 10.36410/jcpr.2020.21.2.148
  • Received on Jul 19, 2019
  • Revised on Feb 18, 2020
  • Accepted on Feb 24, 2020

Correspondence to

  • Ki-Tae Lee
  • bDivision of Advanced Materials Engineering, Jeonbuk National University, Jeonbuk, 54896 Republic of Korea
    cHydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonbuk, 54896 Republic of Korea
    Tel : +82-63-270-2290 Fax: +82-63-270-2386

  • E-mail: ktlee71@jbnu.ac.kr