
Journal of Ceramic Processing Research. Vol. 26, No. 3, pp. 440~449 (2025)
(Received 24 February 2025, Received in revised form 12 March 2025, Accepted 14 March 2025) 
https://doi.org/10.36410/jcpr.2025.26.3.440

440

J O U R N A L O F

Ceramic 
Processing Research

Microbial community dynamics and biogas optimization in full-scale anaerobic 
digesters across South Korea

Okkyoung Choia, Darsha Prabhaharanb, Hyojeong Songc, HyunJin Kimd, Hyunook Kime,*, Jung Han Parkf, 
Amith Abrahamg and Byoung-In Sangb,g,*
aEco Lab Center, SK Ecoplant, 51, Jong-ro, Jongno-gu, Seoul 04763, Republic of Korea
bDepartment of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong- gu, Seoul 04763, Republic of Korea
cDepartment of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic 
of Korea
dDepartment of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
eKorea Electric Power Research Institute, 105 Munji-ro, Yooseong-gu, Daejeon 34056, Republic of Korea
fNational Research Facilities and Equipment Center, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 
34133, Republic of Korea
gClean-Energy Research Institute, Hanyang University, 222 Wangsimni-ro, Seongdong- gu, Seoul 04763, Republic of Korea

Optimizing microbial communities in anaerobic digesters is essential to improving biogas production for sustainable energy. 
This study utilized high-throughput 16S rRNA gene sequencing to pro⿿�le microbial communities from 18 full-scale biogas 
plants across South Korea, revealing key microbial patterns linked to performance. The bacterial consortia were dominated by 
Firmicutes, Bacteroidetes, Cloacimonetes, and Proteobacteria, with feedstock type exerting a marked in㿿�uence on community 
composition. Firmicutes predominated in FW-fed digesters that exhibited high methane yields (≥ 1 m³ CH₄ m⁻³ day⁻¹), whereas 
Proteobacteria prevailed in activated sludge-fed systems characterized by lower methane production. Among archaeal families, 
Methanosarcinaceae, Methanomassiliicoccaceae, and Methanobacteriaceae were especially abundant in high-performing 
plants. Co-occurrence network analysis revealed a strong positive association between Firmicutes and Methanosarcinaceae 
in these reactors, indicative of synergistic metabolic interactions that enhance methane generation. Conversely, low-yield 
plants showed prominent co-occurrence patterns between Proteobacteria and Methanosaetaceae, suggesting alternative or 
less e῿�cient pathways of methanogenesis. Overall, our ⿿�ndings underscore the critical role of feedstock-dependent microbial 
networks in determining biogas plant performance, highlighting speci⿿�c bacterial and archaeal groups as potential biomarkers 
for monitoring and optimizing anaerobic digestion. These insights also lay a foundation for computational modeling aimed at 
predicting metabolic outcomes based on microbiome data, ultimately contributing to more e�ective and sustainable biogas 
production.
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Introduction

Anaerobic digestion (AD) is a multi-stage biochemical 
process in which a consortium of microorganisms 
degrades organic substrates under strictly anoxic 
conditions, ultimately yielding methane and carbon 
dioxide as principal end products. Beyond its capacity 
for energy recovery, AD provides a versatile platform 
for organic waste mitigation, greenhouse gas reduction, 
and facilitating a circular economy. Globally, biogas 
production increased by 11.45%, from 1.31 EJ in 2016 
to 1.46 EJ in 2020. In South Korea, AD systems focus 

on waste treatment rather than energy production, 
highlighting the need for improved operations and 
microbial analyses to enhance biogas efficiency [1, 2].

Within the AD system, carbohydrates, proteins, 
and lipids are sequentially hydrolyzed and fermented 
into volatile fatty acids (VFAs) before conversion to 
methane and CO2 by a consortium of microorganisms 
working sequentially across process steps [3–5]. As each 
stage of the AD process involves discrete metabolic 
interactions, even subtle perturbations in community 
structure can significantly disrupt overall performance, 
as they are strongly influenced by feedstocks [6, 7]. In 
2022, South Korea produced 101,000 metric tons of 
oil equivalent (toe) of energy from biogas [8]. As of 
2016, 90 commercial biogas plants were operating in the 
country, primarily processing food waste (FW), followed 
by livestock manures and sewage sludges. The average 
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biogas yield in domestic facilities was 77.5 m³ per ton of 
FW and 21.7 m³ per ton of wastewater [9]. To address 
low production efficiency, South Korea aims to process 
5.57 million tons of organic waste annually and produce 
500 million Nm³ of biogas by 2026 [10].

Inspired by the EU’s advanced biogas sector, which 
utilizes diverse feedstocks—such as agricultural residues 
and energy crops—and achieves higher average yields 
of 120.0 m³ per ton of organic waste [11]. Numerous 
studies have examined the roles of hydraulic retention 
time, ammonia concentrations, operating temperatures, 
feedstock composition, toxicity, and organic loading 
rates in shaping microbial communities [7, 8]. From these 
analyses, certain methanogens have been identified as 
biomarkers indicative of biogas production performance 
[12–14]. However, most of them have focused on small-
scale or narrowly defined parameters, offering only 
limited insights into the complex metabolic networks 
that develop in full-scale AD systems.

By utilizing recent advancements in bioinformatics, 
such as multi omics and co-occurrence pattern analysis, 
researchers are uncovering interspecies interactions and 
identifying hub microbes that play pivotal roles in the 
AD process [15–17]. These hub microbes responsible 
for critical syntrophic interactions can inform the 
development of biomarkers for rapid diagnostic assays 
and bioaugmentation strategies aimed at boosting biogas 
yields. For instance, prior investigations have highlighted 
syntrophic mechanisms like direct interspecies electron 
transfer (DIET) between Geobacter species and 
acetoclastic methanogens. This network can be enhanced 
by the addition of activated carbon, emphasizing 
the importance of syntrophic metabolism in the AD 
process [18-20]. Despite the significance of the AD 
microbial community, interactions between microbiota, 
such as bacteria–bacteria, bacteria–methanogen, and 
methanogen–methanogen are not well established in 
the large-scale AD reactors, including serial processes 
and symbiotic microbial networks [16]. Furthermore, 
the roles of less-characterized taxa including uncultured 
archaeal lineages have not been systematically well 
evaluated in operational AD biogas plants. 

In this study, we collected 60 microbiome samples 
from 18 commercial biogas plants in South Korea. 
Based on their performance, the biogas plants were 
categorized into two groups: high biogas production 
(Group 1) and low biogas production (Group 2). We 
present a robust dataset that not only pinpoints major 
functional groups but also uncovers potentially novel 
syntrophic linkages that could shape industrial AD 
strategies. Overall, our findings advance fundamental 
knowledge of feedstock-driven microbial assembly 
and highlight the importance of bacterial–archaeal 
interactions in determining process performance. These 
insights also lay the groundwork for computational 
models that integrate microbial profiles to enhance 

biogas production. Ultimately, by tackling challenges 
such as feedstock variability, process instability, and 
suboptimal methane yields, this work underscores the 
pivotal role of AD as a cornerstone for sustainable 
energy solutions. Notably, co-occurrence analysis offers 
a powerful means to detect shifts in microbial networks, 
enabling early interventions to maintain process stability 
and improve methane output. Studies focusing on 
additional model systems and employing metagenomic 
or metatranscriptomic approaches can further confirm 
and extend the implications of these results, driving 
continued progress in AD optimization.

Materials and Methods

Commercial biogas plants and sampling procedures
Eighteen commercial biogas plants located in various 

cities across South Korea were selected for this study. 
All biogas plants operated under mesophilic conditions 
and utilized a range of organic wastes as feedstocks in 
their digesters, either as single substrates or combined 
substrates (Table 1). Samples were collected seasonally 
using 2-liter lightproof plastic bottles from both the 
influent and effluent streams of the AD plants. For 
microbial community assessment, samples were 
transferred to 50 mL tubes, sealed, and stored at –70 °C 
before further analysis.

Chemical Analysis
Water quality parameters were analyzed for both 

influent and effluent samples. Total and soluble chemical 
oxygen demand (TCOD and SCOD), total solids (TS), 
volatile solids (VS), total Kjeldahl nitrogen (TKN), total 
ammonia nitrogen (TAN), total phosphorus (TP), pH, 
total alkalinity (Alk), and lipids (LP) were measured 
according to standard methods [21].

The biochemical methane potential (BMP) test 
was conducted to estimate the methane potential and 
biodegradation extent (BE) of the influent samples 
collected from each biogas plant. BMP tests were 
performed using an automatic BMP tester (AMPTS 
II, Bioprocess Control, Lund, Sweden). The elemental 
composition of the influent samples was analyzed using 
a Thermo 1112 Series Flash EA NC Soil Analyzer 
(Thermo Fisher Scientific, Rome, Italy). The theoretical 
methane yield (BMP_theo) was calculated using Eqs. 
(1) and (2) [22]. The biodegradation extent of a given 
influent sample was calculated using Eq. (3) [1]. The 
carbohydrates (CH), proteins (PR), and variation of 
alkalinity (∆Alk) to indicate the buffering capacity and 
water content were calculated using Eq. (4)-(7). VFAs 
were analyzed by a gas chromatograph with a flame 
ionization detector (GC 2010, Shimadzu, Kyoto, Japan). 
A wax column (SH-Rtx-Wax with 30 m length×0.25 
mm inner diameter×0.25 µm thickness (Chimdazu, 
Kyoto, Japan)) was used for separation.
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  (2)

  (3)

  (4)

  (5)

  (6)

  (7)

Microbial community analysis 
DNA extraction
DNA was extracted from each sample (0.5 g) using 

the FastDNA™ Spin Kit for Soil (MP Biomedicals, 
Solon, OH, USA) according to the manufacturer’s 

instructions. The concentration of extracted double-
stranded DNA was determined using an Infinite M200 
PRO microplate reader (Tecan Austria GmbH, Grödig, 
Austria). The DNA samples were stored at -27 °C for 
subsequent analysis.

DNA Amplification and Next-Generation Sequencing
The V3–V4 region of the bacterial 16S rRNA gene was 

amplified using primers 341F and 805R. Samples were 
amplified for pyrosequencing using a forward and reverse 
fusion primer. The forward primer was constructed with 
the (5’-3’) Nextera consensus (TCGTCGGCAGCGTC), 
a sequencing adaptor (AGATGTGTATAAGAGACAG), 
and the appropriate forward primer selected for the 
bacterial diversity assay (341F: CCTACGGGNGGC-
WGCAG). The reverse fusion primer was constructed  
with the (5’-3’) Nextera consensus (GTCTCGTGGGC-
TCGG), a sequencing adaptor, and the proper reverse  
primer for the bacterial diversity assay (805R: GACTA-
CHVGGGTATCTAATCC). To detect methanogen 
species, Arch519F (CAGCCGCCGCGGTAA) and 
Arch934R (GTGCTCCCCCGCCAATTC) were used 
as methanogen-specific primers. Amplifications were 
conducted in a 25 µL reaction with Dr. MAX DNA 
polymerase (Doctor Protein Inc, Korea), 1 µL of 5 µM 
primer, and 1 µL of template. Reactions were carried 
out using the following thermal profile: 95 °C for 3 
min, then 25 cycles of 95 °C for 30 s, 55 °C for 30 s, 

Table 1. The list of full-scale biogas plants analyzed for microbial community composition. Plants were divided into two groups 
according to biogas production amounts (Group 1 ≥ 1 m3 CH4 m-3 day-1). Plant IDa was arbitrarily labeled. Methane productione was 
normalized per unit volume of facility. The type of feedstockb was displayed as FW (food waste), AS (activated sludge), and SM 
(swine manure). Season was indicated as SP (spring), SU (summer), F (fall), and W (winter, 12; December, 01; January).

Group Plant 
IDa Feedstockb No. of 

samples Sampling season Biodegradation 
(%)c

CH4 

(%)d
CH4 production rate 
(m3 CH4 m-3 day-1)e

Group 1

A FW 4 SP, SU, F, W12 83.0±16.2 63.7±0.6 2.5 
B AS+SM 4 SP, SU, F, W01 76.4±7.5 63.1±2.1 1.6 
C FW 2 SP, W01 79.4±6.2 55.8±0.6 1.5 
D FW 3 SP, W12, W01 85.9±9.5 62.4±3.5 1.3 
E FW 4 SP, SU, F, W01 61.6±12.1 61.8±2.1 1.1 
F AS+SM 1 W12 82.7±6.9 65.9±4.4 1.0
G FW 3 SP, W12, W01 74.6±9.1 62.3±2.6 1.3 

Group 2

H FW+AS 5 SP, SU, F, W12, W01 75.3±7.0 62.0±2.0 0.9 
I AS 3 SP, W12, W01 71.5±5.2 61.6±1.0 0.6 
J AS 4 SP, SU, F, W01 89.8±2.1 59.7±3.9 0.6 
K AS 5 SP, SU, F, W12, W01 65.9±3.3 63.2±1.5 0.3 
L FW+AS 3 SP, W12, W01 73.0±4.9 61.7±0.9 0.3 
M AS+SM 2 W12, W01 81.2 48.8±1.5 0.3 
N AS 4 SP, SU, F, W12 67.4±2.0 59.9±3.6 0.2 
O AS 5 SP, F, SU, W12, W01 67.0±3.3 63.3±1.1 0.2 
P AS 3 SP, W12, W01 73.1 66.5±2.2 0.2 
Q AS 3 SP, W12, W01 60.8±7.6 23.4±0.4 0.1 
R AS 2 SP, W01 71.8 56.6±4.0 0.3
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72 °C for 30 s, followed by one cycle of 72 °C for 5 
min and a 4 °C hold. DNA sequencing was performed 
by CJBiosciences (Seoul, Korea) using an Illumina/
MiSeq platform (San Diego, CA, USA) according to 
the manufacturer’s protocol. 

Bioinformatics and Co-Occurrence Pattern Analysis
Raw sequencing reads from each biogas plant 

sample were processed to analyze the compositions 
and proportions of bacteria and methanogens using 
CLcommunity software (Version 3.46, ChunLab Inc., 
Seoul, Korea). Each pyrosequencing read was processed 
and taxonomically assigned using the EzTaxon-e 
database [23]. Canonical correspondence analysis 
(CCA) was performed to determine the relationships 
between microbial communities and monitored process 
parameters such as feedstock contents, SCOD, VS, TP, 
TN, organic loading rate (OLR), hydraulic retention time 
(HRT), pH, and alkalinity change (ΔAlk). Taxonomic 
suffixes used were _s (species), _g (genus), _f (family), 
_o (order), _c (class), and _p (phylum). Unclassified taxa 
were indicated with the suffix _uc [24].

Heat maps were generated using CLcommunity 
software (Chunlab. Inc., Seoul, Korea) at the phylum 
level for bacteria and family level for methanogens, 
with a 5% abundance cutoff for individual samples. 
Overall phylogenetic distances among communities 
were estimated using Fast UniFrac [25] and visualized 
via principal coordinate analysis (PCoA) [26]. The 
correlation matrix was visualized as a correlogram using 
R software. Network plots of the correlation matrix were 
visualized using Gephi software [27]. Statistical analyses 
were conducted using the data analysis tools in Microsoft 
Excel.

The raw reads generated in this study are available 
in the EMBL Sequence Read Archive (SRA) 
database under accession numbers SUB4238920 and 
SUB4379904.

Results and Discussion

Microbial Community Structure
Bacterial Communities
A comprehensive analysis of 60 samples collected 

from 18 full-scale biogas plants in South Korea revealed 
that the bacterial consortia predominantly comprised 
four phyla: Firmicutes, Bacteroidetes, Cloacimonetes 
(formerly Cloacamonas), and Proteobacteria (Fig. 1). 
Among these, Firmicutes was especially prevalent in AD 
plants (A, B, C, D, E, F, and G) exhibiting relatively 
high methane production rates (≥ 1 m³ CH₄ m⁻³ day⁻¹, 
hereafter referred to as Group 1). In the most pronounced 
case, Firmicutes constituted 83.5% of the bacterial 
community in Plant B-F, whereas it minimally appeared 
at 3.6% in Plant O-SU. Within the Firmicutes phylum, 
the genus Clostridium was the leading taxon, known for 
fermenting organic substrates into intermediates such as 
fatty acids, hydrogen, and CO₂ metabolites essential for 
subsequent methanogenesis [28].

Bacteroidetes ranked as the second most abundant 
bacterial phylum in Group 1 plants. Within Bacteroidetes, 
Porphyromonadaceae is notable for its role in carbohydrate 
hydrolysis [28], thereby facilitating the breakdown of 
complex polymers. Cloacimonetes were conspicuously 
abundant in Plants F (44.1%) and R (42.7%), consistent 
with previous findings that this phylum can utilize 
amino acids, sugars, and carboxylic acids [29]. By 
contrast, in lower methane-producing plants (Group 2), 
Bacteroidetes, Cloacimonetes, and Proteobacteria often  
co-occurred in comparable proportions (Fig. 1), 
underscoring the link between microbial community 
composition and reactor performance.

CCA indicated a significant correlation between 
elevated Firmicutes abundance and higher VFA 
concentrations (Fig. 2). As key intermediates in AD, 
VFAs can shape the microbial ecosystem, enriching 
Firmicutes due to their propensity for fermenting these 
substrates. However, aside from VFA levels, no other 
operational variables emerged as strong drivers of the 

Fig. 1. The circle heat map presents the relative portion (phylum level) of bacteria. The size of the circle indicates the contribution 
(>5% relative abundance in at least one sample) of phyla to the total bacterial community. The sample was labeled as plant ID-Season. 
Season is indicated as SP (spring), SU (summer), F (fall), and W (winter, 12; December, 01; January).
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observed bacterial dominance patterns, suggesting that 
the determinants of community assembly in large-scale 
AD systems are multifaceted.

Influence of Feedstock on Bacterial Communities
Feedstock type was a major factor steering bacterial 

community structure (Fig. 3a). Biogas plants receiving 
FW and swine manure (SM) displayed a marked 
prevalence of Firmicutes, echoing prior studies that 
linked easily degradable substrates to this phylum’s 
dominance [30, 31]. Across all samples, the BMP 
expressed as methane yield per gram of VS remained 
relatively uniform (±77.8 mL CH₄ g⁻¹ VS; Table 1). 
Thus, discrepancies in total methane output were likely 
tied to variations in the feedstock’s VS content rather 
than differences in microbial metabolic efficacy.

Indeed, FW exhibited the highest VS content (122 ± 7.6 
g L⁻¹), nearly fivefold greater than that of activated 
sludge (AS; 24.2 ± 5.8 g L⁻¹) (Fig. 4a). Plants A, C, D, 
E, and G, which all utilized FW, correspondingly yielded 

higher overall biogas, supporting earlier observations 
that elevated VS levels bolster methane productivity 
[30,31]. Moreover, Firmicutes abundance demonstrated 
a positive correlation with VS concentrations (R² = 0.60; 
Fig. 4b), suggesting that substrates rich in fermentable 
organic matter favor Firmicutes proliferation and, by 
extension, enhance the early stages of hydrolysis and 
acidogenesis.

Proteobacteria, conversely, were broadly distributed 
(4.2–15.8%) among AS-fed plants (except Plant G) but 
were not dominant in FW-fed systems (Fig. 3a). In AS-
fed reactors, Proteobacteria frequently include sulfate-
reducing bacteria such as Desulfovibrio and denitrifiers 
like Dechloromonas [32, 33]. Their roles in sulfur and 
nitrogen cycling may be more significant in wastewater-
derived feedstocks, making them potential biomarkers 
for AS-containing substrates. Meanwhile, seasonal 
variability was negligible across most plants, aside 
from Plant J, which exhibited distinct seasonal shifts 
in dominant phyla Cloacimonetes in spring, Firmicutes 

Fig. 2. Scatter plot of canonical correlation analysis (CCA) between environmental variables and the relative abundance of bacteria 
(phylum level) in biogas plants. Each spot indicates a bacterial phylum, and major bacteria (>5% in phylum level) are shown as 
green spots with phylum names. Correlation with performance parameters is indicated by the arrow.
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Fig. 3. The relative abundance of bacterial phyla (a) and archaeal families (b) in categorized AD plants with the type of feedstock. 
FW; FW, AS; activates sludge, SM; swine manure. Tentative names were given by adding a suffix to the GenBank accession numbers.

Fig. 4. Volatile solid (VS) content affects the distribution of Firmicutes in biogas plants. (a) The VS content in each type of feedstock 
used in biogas plants. Error bars represent one standard deviation of the mean value, (b) the positive relationship of relative abundance 
of Firmicutes with VS content.
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in summer, Bacteroidetes in fall, and Proteobacteria 
in winter (Fig. S1). Although these shifts could reflect 
temporal alterations in operational or environmental 
factors, CCA did not pinpoint a specific driver, implying 
that additional variables or complex microbial interactions 
may underlie these patterns.

Archaeal Communities
Distribution of Methanogenic Families
Mirroring the trends observed in bacterial communities,  

archaeal family composition also varied by feedstock  
(Fig. 3b). Methanosarcinaceae and Methanomassiliico-
ccaceae were abundant in FW-fed plants, whereas 

Fig. 5. The circle heat map presents the relative portion (family level) in archaea. The size of the circle indicates the contribution 
(>5% relative abundance in at least one sample) of the archaeal family to the total archaeal community. The sample was labeled as 
plant ID-Season. Season is indicated as SP (spring), SU (summer), F (fall), and W (winter, 12; December, 01; January).

Fig. 6. Scatter plot of canonical correlation analysis (CCA) between environmental variables and the relative abundance of archaea 
(family level) in biogas plants. Each dot indicates an archaeal family, and interesting methanogens are shown as green spots with 
the name of the family.
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an uncultured archaeon clone LNJC dominated AS-
fed plants. This finding underscores that feedstock 
composition not only influences bacterial assemblages 
but also modulates the structure of methanogenic archaea 
essential for CH₄ generation. At the family level, five 
core groups emerged as key methanogens in the 60 
samples: Methanobacteriaceae, Methanosarcinaceae, 
Methanomassiliicoccaceae, Methanosaetaceae, and LNJC  
(Fig. 5). LNJC, an uncultured archaeon (accession 
number LNJC01000028), has been detected in 
methanogenic wastewater bioreactors [34] and AS 
digesters [35,36], implying a specialized niche in AS-
fed environments. Different methanogenic families 
utilize distinct metabolic pathways: Methanobacteriaceae 
are hydrogenotrophic, converting H₂/CO₂ to CH₄ [37]; 
Methanomassiliicoccaceae are methylotrophic, relying on 
methanol or methyl compounds [38]; Methanosaetaceae 
are obligate acetoclasts, oxidizing acetate [39]; and 
Methanosarcinaceae are metabolically versatile, capable 
of both acetoclastic and hydrogenotrophic methanogenesis 
[39]. This diversity enables a more complete exploitation 
of intermediates produced during AD.

Correlating Archaea with Reactor Performance
Methanosarcinaceae was prevalent in Plants A, B, 

and E, particularly the genus Methanimicrococcus. 
Plants C and D, in contrast, were dominated by 
Methanomassiliicoccaceae (e.g., Methanogranum sp.),  
while Methanobacterium petrolearium (Methano-
bacteriaceae) was abundant in Plant G. Interestingly, 
these sets of plants shared Firmicutes as their principal 
bacterial phylum yet displayed markedly different 
archaeal compositions. This suggests that methanogen 
prevalence is shaped not only by bacterial community 

structure but also by factors such as reactor design, 
substrate availability, or environmental conditions.

CCA focusing on Group 1 samples (metadata in 
Table S1; Fig. 6) highlighted water content as a driver 
in Plants C and D, whereas SCOD influenced Plant G. 
Methanosarcinaceae tended to predominate in systems 
exhibiting substantial alkalinity differentials between 
influent and effluent (Fig. 6), possibly due to their noted 
resilience to fluctuations in pH and VFA concentrations. 
The genus Methanimicrococcus, widely documented in 
pharmaceutical wastewater bioreactors [40] and in high-
nitrate rumen ecosystems [41], exemplifies this adaptive 
versatility. One species, Methanimicrococcus blatticola, 
can metabolize methanol, methylamines, acetate, and 
H₂ [42], reinforcing the notion that metabolic flexibility 
contributes significantly to robust CH₄ production in 
diverse substrates.

Network Analysis of Bacteria–Methanogen Co-
occurrence

Synergistic and Antagonistic Interactions
AD progresses through hydrolysis, acidogenesis, 

acetogenesis, and methanogenesis, where methanogens 
utilize acetate, methanol, or H₂/CO₂ produced by 
fermentative bacteria. Given the feedstock-dependent 
nature of these upstream steps, we examined co-occurrence 
patterns between bacterial phyla and methanogenic 
families to elucidate their functional interplay.

Multiple positive and negative associations emerged  
(Fig. 7a). Firmicutes, strongly linked to higher VS  
concentrations, exhibited significant positive correlations  
with Methanosarcinaceae (r = 0.66), Methanomicro-
biaceae (r = 0.55), Methanomassiliicoccaceae (r = 0.41), 
and Methanobacteriaceae (r = 0.37). Such relationships 

Fig. 7. Co-occurrence patterns of microbial organisms in biogas plants. (a) Positive or negative correlations between bacterial (green) 
and archaeal (black) abundance and the contribution to each bacteria and methanogen community. (b) The positive correlation 
between microbial organisms in biogas plants. The thickness of connecting lines (edge) is proportional to the correlation coefficient, 
calculated by the Spearman correlation method.
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suggest synergistic partnerships whereby Firmicutes 
produce essential intermediates e.g., acetate, hydrogen, 
and VFAs that feed these methanogens. Consistent with 
this, Clostridium (Firmicutes) is known to generate 
substrates conducive to Methanosarcinaceae growth [43].

On the other hand, Firmicutes negatively correlated 
with LNJC (r = –0.94) and Methanosaetaceae (r = 
–0.88). This pattern might signify competition for 
limited substrates or distinct ecological niches. Because 
Methanosaetaceae thrive as obligate acetoclasts under 
low acetate conditions [44], Firmicutes-enriched 
environments characterized by higher VFA loads may 
not favor Methanosaetaceae proliferation.

Bacterial-Bacterial and Methanogen-Methanogen 
Interactions

LNJC (r = 0.77) and Methanosaetaceae (r = 0.89) 
both showed co-abundance with Chloroflexi, primarily 
of the Anaerolineae class known cellulose degraders [45]. 
This co-occurrence implies a putative syntrophic loop 
where Chloroflexi liberate acetate from polysaccharides, 
subsequently utilized by Methanosaetaceae and possibly 
LNJC. Notably, Methanosaetaceae also correlated strongly  
with Proteobacteria (r = 0.94), suggesting additional 
syntrophic interactions. Though some studies associate 
Proteobacteria with higher total solids and reduced 
methane yields [46], the extent of their role may depend 
on environmental factors and specific community 
dynamics.

A noteworthy positive correlation emerged between 
Bacteroidetes and Methanomassiliicoccaceae (r = 0.61), 
implying a synergy wherein Bacteroidetes degrade 
complex carbohydrates into VFAs or methanol, fueling 
methylotrophic methanogens [38]. Network analyses 
also revealed significant bacteria–bacteria correlations, 
such as Chloroflexi with Proteobacteria (r = 0.83) and 
Proteobacteria with Synergistetes (r = 0.45), as well as 
a strong methanogen–methanogen correlation between 
LNJC and Methanosaetaceae (r = 0.80) (Fig. 7a). 
These patterns collectively suggest intricate microbial 
cooperation or shared environmental preferences.

Implications for Biogas Optimization
The co-occurrence network (Fig. 7b) underscores 

pivotal relationships that govern AD efficiency. Thick 
edges indicate high-correlation pairs e.g., Firmicutes–
Methanosarcinaceae pointing to microbial consortia that 
likely optimize substrate turnover and methane generation. 
Conversely, correlations involving Methanosaetaceae 
and Proteobacteria or Chloroflexi suggest alternative 
metabolic pathways potentially prominent under lower 
VFA or specialized niche conditions. Recognizing 
these interactions has considerable practical relevance. 
For instance, fostering Firmicutes–Methanosarcinaceae 
partnerships might enhance methane yields in reactors 
processing high-VS feedstocks, whereas stimulatory 
strategies for Methanosaetaceae could be beneficial 

under low-acetate, stable pH conditions. Despite the clear 
potential, further validation in diverse AD environments 
is warranted. Metagenomic or metatranscriptomic studies 
could substantiate these network-based inferences, 
revealing the enzymatic pathways and functional genes 
involved.

Moreover, leveraging “hub microbes” for targeted 
bioaugmentation or early-warning diagnostics holds 
promise for maintaining process stability. Co-occurrence 
patterns can detect shifts in community composition that 
precede operational failures, offering plant operators a 
preventive management tool. As a result, these insights 
pave the way for the development of more sophisticated, 
computationally driven models that integrate dynamic 
microbial data into real-time process control strategies.

Overall, this work demonstrates that feedstock-specific 
microbial communities, particularly their interlinked 
bacterial and methanogenic members, decisively impact 
biogas plant performance. By elucidating core syntrophic 
relationships and unveiling potential biomarkers for 
methanogenic efficiency, we establish a foundation for 
practical interventions aimed at enhancing anaerobic 
digestion across a range of industrial conditions.

Conclusion

This study comprehensively examined the microbial 
consortia in 18 full-scale AD plants across South 
Korea, illuminating how feedstock composition and 
operational factors shape biogas production. Our findings 
demonstrate a strong correlation between methane yield 
and the VS content of the feedstock, with Firmicutes 
emerging as potential VS-related biomarkers in high-
yield digesters. By contrast, Chloroflexi, Proteobacteria, 
and Synergistetes were more prevalent in AS fed 
reactors that exhibited comparatively lower methane 
outputs. Network analyses highlighted the importance 
of co-occurrence patterns: Firmicutes correlated 
strongly with methanogens such as Methanosarcinaceae, 
Methanomassiliicoccaceae, and Methanomicrobiaceae 
in high-yield plants, whereas Methanosaetaceae co-
occurred with Proteobacteria, Chloroflexi, Actinobacteria, 
Synergistetes, and Bacteroidetes in lower-yield facilities. 
These results underscore the critical role of feedstock-
dependent microbial communities in governing AD 
performance and offer practical insights for optimizing 
biogas processes. By leveraging identified biomarkers 
and “hub microbes,” operators can proactively monitor 
reactor health and implement targeted strategies, 
such as adjusting feedstock composition or applying 
bioaugmentation to enhance process stability and methane 
generation. Additionally, the microbiome data can 
inform computational models for predicting metabolic 
responses and guiding operational interventions. This 
work advances our understanding of AD ecosystem 
dynamics and provides a foundation for more efficient, 
resilient, and data-driven biogas production across 
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diverse industrial contexts.
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