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This research investigates the application of spark electro-discharge machining for fabricating a stir-cast composite reinforced 
with silicon carbide, based on the Al7050 alloy. Employing a response surface methodology with a central composite design, 
the study explores 20 combinations of control parameters to investigate their collective in�uence. Speci�cally, it focuses on 
understanding how three key machining parameters—current, pulse-on time, and pulse-o� time—a�ect material removal 
rates, electrode wear, and surface roughness. A novel teaching-learning-based optimization strategy, integrating response 
surface methodology with grey relational analysis, is utilized to optimize multiple responses. The optimized parameters 
derived through response surface methodology are a current of 10 amps, a pulse-on time of 6 µsec, and a pulse-o� time of 
5 µsec, resulting in signi�cant improvements. These optimized settings correspond to material removal rates, electrode wear 
rates, and surface roughness values of 0.01074 g/min, 0.0040 g/min, and 4.9395 µm, respectively. Additionally, the teaching-
learning-based optimization method employs grey relational analysis initially to rank the input factors. With the optimized 
process variables obtained using GRA-TLBO—8.48 amps for current, 6.22 µsec for pulse-on time, and 3.34 µsec for pulse-o� 
time—the material removal rate, electrode wear rate, and surface roughness are further enhanced to 0.01159 g/min, 0.00408 
g/min, and 3.7202 µm, respectively.
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Introduction

In the production of goods, most engineering sectors 
require materials with outstanding qualities, including 
high resistance to corrosion and wear, low weight, 
affordability, and strong strength. However, finding a 
single material with all these qualities is challenging. 
Hence, composite materials were developed to address 
this crucial need [1]. A composite material consists of 
reinforcement and a matrix phase. In recent decades, 
researchers have increasingly focused on aluminium 
matrix composites (AMCs) due to their key properties, 
including low density compared to other lightweight 
alloy-based composites, excellent castability, and 
affordability. These exceptional attributes have led to 
widespread use of ceramic particulate-embedded AMCs 
in the automobile and aerospace sectors for various 
applications, such as cylinder liners, air intake valves, 
bumpers, pistons, spoilers, engine blocks, drive shafts, 
disc brakes, etc [2-4].

In this study, Al7050 alloy is chosen as the matrix 

phase due to its high strength, low density and high 
thermal stability. In addition, owing to its good thermal 
conductivity, Al7050 alloy materials are used in high 
temperature applications [5]. Desired technological 
properties of the particles embedded AMCs largely 
dependent on the type of ceramic reinforcing particles and 
its quantity added. Extensively used ceramic particulates 
are TiC, MoS2, SiC, Gr, ZrB2, B4C, Al2O3, etc. Among 
these, SiC has pulled several researchers attention due to 
its inherent excellent characteristics such as good wetting 
ability, high strength and wear resistance at elevated 
temperatures, economical, excellent corrosion resistance 
and less chemical reactivity [6]. These excellent desired 
aspects in SiC induced us to consider as the reinforcing 
particles in this study to augment the properties of base 
material. Several researchers have discussed that the 
optimal wt% of reinforcement for composite material 
fabrication is 15 wt% [7].

Although, various manufacturing methods are 
available to synthesize particulates embedded AMCs, 
there exist some drawbacks such as poor dispersion 
of reinforcing constituents in the matrix, expensive 
fabrication and difficult to attain net shape [8]. Stir 
cast fabrication methodology found to be appropriate to 
synthesize composites and it has various benefits such as 
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high production, good dispersion of particulates owing to 
stirring at higher rpm, ease to attain components closer 
to the required form and most economical relative to 
other fabrication methods [9, 10].

The effective applications of composites are limited 
as a result of excessive tool wear and machining cost in 
conventional material removal processes. This negative 
phenomenon is mainly associated to the presence of 
reinforcing parts in the base material [11]. Therefore, 
alternate machining techniques are necessary to machine 
composites with good accuracy and surface quality. 
Several non-contact machining processes such as water 
jet machining, electro-chemical machining, electro-
discharge machining (EDM) and laser beam machining 
have been experimented to machine composite materials. 
Among them, EDM (non-contact thermal process) found 
as the promising method to machine harder material 
like ceramics, titanium, tungsten carbide, nickel based 
alloys and composites with desired accuracy and surface 
finish [12, 13]. It is also renowned that achieving high 
machining efficiency in EDM along with less surface 
waviness and electrode erosion are challenging when 
composite materials as specimen. Therefore, it is needed 
for multi-characteristics optimization system to satisfy the 
conflicting objectives (viz., maximum MRR, minimum 
electrode wear and surface roughness) at a time. 

Previous studies have conducted extensive sensitivity 
analysis and optimization of process variables to 
enhance the performance metrics of Electrical Discharge 
Machining (EDM) on various tougher and higher-strength 
materials [14-19]. For instance, researchers investigated 
process factors including current, electrode polarity, spark 
off-time, and sparking time during the EDM of Al7050-
B4C composites. According to experimental results, 
positive polarity minimized tool erosion and surface 
waviness and produced the highest rate of workpiece 
material ablation compared to negative polarity [14]. 
In the case of the Al/TiC/B4C hybrid composite, an 
examination of electrical independent factors such as 
gap voltage, spark duration, and pulse current was 
conducted. The findings showed that pulse current 
strongly affected all performance parameters (MRR, hole 
dilation, and tool erosion rate) in a linear fashion with 
progressive variations in current levels [15]. The efficacy 
of EDM was assessed using a combination of overcut, 
form tolerances, and taper, focusing on the quality of 
machined holes. Surprisingly, it was demonstrated 
that spark off-time significantly contributed to hole 
quality metrics in relation to discharge current, sparking 
duration, and flushing force [16]. Feasibility studies 
conducted by several researchers [17, 18] on composite 
materials revealed that the reinforcing components in the 
matrix reduced matrix phase deterioration and inhibited 
effective sparking. Additionally, the impact of increasing 
the weight percentage of SiC in the Al-SiC composite's 
performance characteristics during machining was 
investigated. It was shown that while electrode wear 

increased, the rate of material erosion reduced as the 
quantity of reinforcement in the matrix phase increased 
[6].

Response surface methodology (RSM) was exploited 
to understand the interaction between independent 
process variables and output metrics during machining 
of Magnesium (Mg) alloy. The process effect analysis 
showed direct proportional relationship for surface 
roughness and tool erosion with increase in pulse on and 
off duration [19]. From the above discussions, it is clear 
that current, spark on duration and pulse interval have 
significant impact on EDM performance metrics and 
showed large variations in the responses during different 
levels of operating conditions. Hence, it is essential to 
control and optimize the most influencing variables to 
get the desired outcomes (i.e., Maximum MRR and 
Minimum EWR & SR). These kind of opposite nature 
objectives problems falls under multi-criteria decision 
making (MCDM) problems. 

EDM process variables can be optimized using 
different optimization techniques like Taguchi [20], 
RSM [6], Grey relational analysis (GRA) [4, 21], 
TOPSIS [22], TLBO [23, 24], Firefly and Cuckoo 
Search Algorithms [25], etc., From the previous research 
on EDM process variable optimization, it is apparent that 
TLBO algorithm is efficient and better MCDM method 
to solve problems with less computational effort and 
time. Moreover, TLBO is known to exhibit robustness 
in various optimization scenarios, including noisy or 
uncertain objective functions [26]. 

Based on a thorough review of the literature, it is 
evident that among the various combinations of ceramic 
reinforcements and aluminium alloy matrices, Al/
SiC is one of the most significant Aluminum Matrix 
Composites (AMCs). It possesses appealing mechanical, 
thermal, and physical properties, rendering it suitable for 
the production of high-stress components. The potential 
applications of Al/SiC in various technical sectors can be 
greatly enhanced by producing high-quality components. 
EDM is often employed for machining harder materials 
like composites, and previous studies have primarily 
focused on optimizing EDM process parameters using 
techniques such as Taguchi, RSM, GRA, GA, etc.
However, there are limited examples of multi-response 
optimization in diesinking EDM of composites based 
on Al7050. Specifically, the application of hybrid 
optimization techniques, such as GRA-TLBO, for 
multi-objective optimization of diesinking EDM process 
parameters on Al7050-15SiC, has not been explored 
previously.

Thus, the stir casting method is employed in this study 
to synthesize Al7050/15SiC, and diesinking EDM is 
utilized to investigate the machinability of the resulting 
composite. RSM is employed to develop a quadratic 
regression model of MRR, EWR, and SR. Subsequently, 
the desirability function technique is applied to optimize 
these conflicting responses. The process parameters 
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are further refined using a unique hybrid optimization 
technique called GRA-TLBO to achieve the desired 
outcomes. GRA-TLBO offers promising results in 
controlled experimental settings, its effectiveness in 
industrial environments hinges on factors such as 
equipment compatibility, material characteristics, and 
operational constraints. Additionally, the robustness and 
reliability of the optimized parameters need validation 
across diverse production scenarios to ensure consistent 
performance. Finally, a confirmatory experimental test 
is conducted to assess the effectiveness of both RSM 
and GRA-TLBO..

Experimental Work

Base alloy and reinforcement
In this work, Al7050 alloy is considered as the 

matrix material and the ingots are procured from Perfect 
Aluminium Alloys, Coimbatore, India. To enhance the 
material characteristics of Al7050 alloy, Silicon carbide 
(SiC) of average particle size 35 μm is selected as the 
reinforcement particulates and it is purchased from Covai 
Metal Mart, Coimbatore, India. SiC has properties such as 
good thermal conductivity, low cost, excellent chemical 
resistance and high wettability with the matrix material 
[37]. Similarly, Al7050 alloy possess characteristics such 
as high strength, good wear resistance, low density and 
excellent corrosion resistance. It has been extensively 
used to produce aircraft structures and automotive 
components like fuselage, engine casing, turbine casing, 
etc [5].

Fabrication and Mechanical testing of Al7050-15SiC 
Al7050-15SiC cast specimen is produced for EDM 

experimentation through bottom pouring stir cast 
method. Initially, Al7050 alloy ingots are melted at 
800 oC in a furnace using graphite crucible and the 
reinforcing particulates i.e., 15 wt% SiC is preheated 
simultaneously at 400 oC to remove away the moisture 

content. This preheat treatment of reinforcement is done 
to enable good bonding between the matrix material 
and SiC. Then, the heated strengthening particulates are 
poured in to the matrix melt and stirred at 650 rpm 
for 10 mins. High speed mechanical stirring action is 
opted in this work in order to facilitate even spread of 
reinforcements in Al7050 alloy. Finally, the composite 
mixture is poured in to a pre-heated die and permitted 
to solidify. The dispersion of SiC in the Al7050 matrix 
alloy is analyzed using a scanning electron micrograph 
of the produced composite, as depicted in Fig. 1, 
before embarking on the machinability investigation of 
Al7050-15SiC. The results reveal that the reinforced SiC 
particles are uniformly distributed throughout the matrix 
phase, suggesting a positive influence on the mechanical 
properties of the resulting composite.

According to ASTM E10 and ASTM E8 standards, 
Brinell hardness and tensile tests are conducted to 
evaluate the impact of 15 wt% SiC in Al7050 alloy. 
Al7050-15SiC demonstrates a hardness of 118 BHN and 
a maximum tensile strength of 269 MPa, respectively. 
In comparison to standard Al7050 alloy, the synthesized 
composite exhibits a 73% increase in hardness and a 
62% increase in strength. The enhanced hardness and 
strength values of Al7050-15SiC can be attributed to the 
SiC elements in the Al7050 matrix that bear load under 
loading conditions. A similar observation was reported 
in reference [38].

Experimental setup
Al7050-15SiC composite is machined under a variety 

of processing conditions. The line diagram of the EDM 
process is explained in Fig. 2 and is utilised in the 
experimental work with an ELEKTRA PLUS Spark EDM 
PS 50 ZNC series machine.Copper electrode of length 
20 mm and 3 mm diameter is used to produce through 
holes in this study. It is important to note that good 
electrical conductivity and less wear are the important 
characteristics of any tool material. Among commonly 
used tool materials such as brass, aluminium, copper 
and graphite, copper has the above said properties as 
inherent characteristics. Also, copper electrode produces 

Fig. 1. SEM Micrograph of Al7050-15SiC. Fig. 2. Line diagram of EDM process.
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high material removal from the work piece along with 
good surface quality [17]. 

Numerous electrical and non-electrical factors, including 
electrode shape, pulse interval, open discharge voltage, 
flushing pressure, polarity, discharge current, and more, 
have an impact on the Electrical Discharge Machining 
(EDM) process. However, assessing how each of these 
factors affects performance traits can be challenging. 
Therefore, in this study, the important electrical 
parameters that have shown notable variations in output 
characteristics are I (current), Pon (pulse on-time), and 
Poff (pulse off-time) [38]. The dielectric tank dimensions 
are 800 × 500 × 350 mm, and the EDM machine used in 
this study has a load capacity of 3 KVA. Fig. 3 illustrates 
the machined Al7050-15SiC composite.

Experimental design for machining Al7050 based 
composite

In this investigation, we employ the RSM central 
composite design methodology to structure our experi-
mental trials. Utilizing the Design Expert program, we 
generate 20 runs, with the number of trials dictated 
by the process parameters and the predefined ranges 
chosen for the study. These ranges are determined 
based on both the capacity of the machining equipment 
and preliminary trials conducted on the Al7050-15SiC 
composite. Notably, we observe that the ablation of 
workpiece material remains relatively unaffected when 
discharge current values are below 4 amps. Conversely, 
we disregard current levels surpassing 12 amps to ensure 
stable machining and mitigate excessive tool wear. To 
identify optimal settings for spark interval and pulse 
length, we select a broad range depending on the 
machine's capacity. Specific details regarding the range 
and levels of the process variables are provided in Table 
1. Pulse-on time influences MRR by determining the 
duration of electrical discharge, affecting the amount of 

material removed per pulse. Pulse-off time regulates the 
interval between pulses, impacting EWR by allowing for 
electrode cooling and debris removal. Current controls 
the intensity of the electrical discharge, affecting both 
MRR and EWR. Optimization involves adjusting 
these variables to balance MRR, EWR, and surface 
roughness for efficient machining of the composite 
material. Each experimental run includes a combination 
of eight factorial points (± 1 levels), six star points (± 1.68 
levels), and six center points. Additionally, we conduct 
six replication runs using mid-level machining settings to 
evaluate the repeatability of the EDM process. Throughout 
randomized tests, we carefully consider the influence of 
various EDM technique factors on performance metrics such 
as material ablation rate, tool electrode degradation rate, and 
surface irregularities. Furthermore, Table 2 presents additional 
combinations of process factors alongside their corresponding 
measured responses.

Methods for evaluating machining metrics
Ra, EWR and MRR are used to compute the process' 

machinability. Eqs. (1)-(2) depict the formula used to calculate 
MRR and EWR.

 (1)

 (2)

where, 
 Wi- Weight of the workpiece prior to machining
 WF- weight of the workpiece post-machining
 Ei - Weight of the electrode prior to machining 
 EF - weight of the electrode post-machining 
 t - Machined time

The weight loss of the workpiece throughout the time 
required to create a through hole is analyzed to estimate 
the material removal rate from the Al7050-15SiC for each 
combination of parameters [39]. Similarly, the weight loss 
of the electrode during the machining process is utilized to 
calculate the electrode erosion rate, and a surface roughness 
tester is employed to examine the interior surface quality of 
the created holes.

Response Surface Methodology
RSM numerical technique is acclimated to analyze correlation 

among dependent variable and the response metrics with the 
aid of mathematical model. The interactions and higher order 
impacts of process variables on the metrics (responses) can be 
evaluated and graphically projected as three dimensional surface 
plots through quadratic form of mathematical expression. A 

Table 1. Experimental factors with five levels.

Variables Symbols Units
Levels

-1.682 -1 0 +1 +1.682
Pulse-on time Pon µsec 5 6 7 8 9
Pulse-off time Poff µsec 3 4 6 8 9

Current I amps 4 6 8 10 12

Fig. 3. Machined workpiece.
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standard polynomial RSM mathematical expression having 
second order is depicted below in Eq. (3).

 (3)

where, 
Ri= Response, D0 = Constant, Di, Dii and Dij = Regression 

constants of linear, quadratic and interaction terms respectively 
and xi = Process variables.

This study investigates the effects of machining parameters on 
MRR, EWR, and SR, such as pulse current, spark duration, and 
sparking period. Moreover, the ANOVA (analysis of variance) 
test is utilized to verify the suitability of the performance models 
that were built. Ultimately, utilizing a numerical optimization 
tool—the desirability function technique of RSM—multiple-
response optimization is carried out to achieve the desired 
outcomes, including a greater MRR, a limited quantity of 
EWR, and superior surface quality. Using this method, 
measured metric terms are converted into a unit-less number 
called a desirability value, which ranges from 0 to 1. When 
the response value or any of the process variables is outside of 
the desired range, the desirability value will be zero. Eqs. (4) 
and (5) illustrate how the desirability function is divided into 
two desirable objectives, a maximum and a minimum, based 
on the nature of the output performance characteristics. Next, 
using Eq. (6), the composite desirability value is computed by 
adding the desirability values of each response.

For maximum response criteria, desirability function di is 
represented as follows:

di = , xmin ≤ x ≤ xmax  (4)

di = 1, if x > xmax

di = 0, if x > xmin

For miniumum response criteria, desirability function di is 
represented as follows:

di = , xmin ≤ x ≤ xmax (5)

di = 1, when x > xmin

di = 0, when x > xmax

when, y - weight, x - predicted response and n - number 
of response

Composite desirability (d) = 
 (d1 × d2 × d3 × ... dn)1/n

 (6)

The optimized parameter levels are identified as the set of 
process parameters that exhibit the highest composite desirability 
value. Furthermore, there is no meaningful constraint dictating 
that the composite desirability value should be close to 1 [40]. It 
merely indicates the separation between the optimized value of 
the responses and the highest and lowest values of the measured 
performances.

Table 2. Experimental trials and its responses.
Std Run I Pon Poff MRR (gm/min) EWR (gm/min) SR (μm)
1 11 6 6 4 0.006268 0.002 4.488
2 15 10 6 4 0.0115362 0.004 4.8195
3 6 6 8 4 0.0121365 0.004 5.8195
4 14 10 8 4 0.0181205 0.006 8.058
5 2 6 6 8 0.0051065 0.001 4.1565
6 17 10 6 8 0.005933 0.003 4.8295
7 12 6 8 8 0.0064445 0.003 4.692
8 20 10 8 8 0.0105015 0.005 6.018
9 19 4 7 6 0.004932 0.002 3.5245
10 16 12 7 6 0.0160792 0.005 6.0435
11 13 8 5 6 0.0042265 0.001 4.2175
12 10 8 9 6 0.013942 0.005 6.936
13 9 8 7 3 0.0147985 0.005 6.1965
14 5 8 7 9 0.0068805 0.003 5.0235
15 18 8 7 6 0.008564 0.003 5.884
16 4 8 7 6 0.007995 0.003 5.406
17 8 8 7 6 0.0093925 0.003 5.283
18 7 8 7 6 0.008286 0.003 5.508
19 3 8 7 6 0.008557 0.003 5.5245
20 1 8 7 6 0.008037 0.003 5.7865
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Results and Discussion

Regression Modeling of EDM performance 
characteristics and checking its adequacy

As a function of independent variables like current, spark on 
time and discharge off time, a Response Surface Methodology 
based regression expression for material ablation rate, electrode 
erosion rate and SR has been built using the measured 
experimental data. In addition, through analysis of variance, 
the prediction effectiveness of developed metrics equation is 
verified and the results are discussed in the subsequent sections.

Adequacy verification of the developed response 
models

Surface roughness (SR), electrode degradation rate, 
and material ablation rate are all predicted using 
the quadratic model suggested by the fit summary 
approach. Tables 3-5 present the material ablation rate, 
electrode degradation rate, and SR ANOVA test results, 
respectively. The F-ratio values obtained for material 
ablation rate (MRR), electrode erosion rate (EWR), and 
surface roughness (SR) are 29.32, 36.21, and 42.61, 
respectively. These F-ratio values indicate the significant 
nature of the established performance models, primarily 
due to the uncertainty effect, which has a probability 
of 0.01%. An evaluation at a 95% confidence level of 
the p-value provides further evidence of the models' 
appropriateness. If the p-value is less than or equal to 
0.05, the model is considered statistically significant. 
The ANOVA findings unequivocally demonstrate that 
all of the response models' p-values—MRR, EWR, and 
SR—are less than 0.05. This confirms the suitability and 
accuracy of the second-order response models developed 

using response surface methodology (RSM) for making 
minimally error-prone response predictions.

Because their p-values are less than 0.05, the ANOVA 
test results on the MRR data indicate that X (I), Y 
(Tonne), Z (Toff), YZ, and the quadratic term of Z 
are the key factors influencing MRR. For EWR, the 
significant adjustable factors include variables X, Y, Z, 
and Z2. Lastly, the ANOVA results for SR suggest that 
the important factors are X, Y, Z, XY, YZ, and X2.

Mathematical expression of MRR, EWR and SR
The succeeded second order mathematical equation 

for actual factors of material ablation rate, electrode 
erosion rate and surface roughness are shown in Eq. 
(7)-(9) respectively.

  (7)

 

 (8)

 (9)

The residuals of the created MRR, EWR, and SR 
models are assessed for normality using the Anderson-
Darling (AD) normality test, as illustrated in Fig. 4-6. 

Table 3. ANOVA outcomes of material removal rate.
Source Sum of Squares df Mean Square F Value p-value Prob> F
Model 2.816E-004 9 3.129E-005 29.32 < 0.0001 significant

X-I 8.910E-005 1 8.910E-005 83.50 < 0.0001
Y-Pon 8.816E-005 1 8.816E-005 82.62 < 0.0001
Z-Poff 8.165E-005 1 8.165E-005 76.52 < 0.0001
XY 1.947E-006 1 1.947E-006 1.82 0.2066
XZ 5.070E-006 1 5.070E-006 4.75 0.0543
YZ 5.357E-006 1 5.357E-006 5.02 0.0490
X2 4.570E-006 1 4.570E-006 4.28 0.0653
Y2 5.296E-008 1 5.296E-008 0.050 0.8282
Z2 6.687E-006 1 6.687E-006 6.27 0.0313

Residual 1.067E-005 10 1.067E-006
Lack of Fit 9.356E-006 5 1.871E-006 7.12 0.1252 not significant
Pure Error 1.314E-006 5 2.629E-007
Cor Total 2.923E-004 19

R2 0.9635
Adj R2 0.9306

Adeq Precision 20.646



Investigation of sparking electro discharge machining for fabricating silicon carbide reinforced Al7050… 329

The p-value of the AD statistic test is observed to exceed 
the confidence threshold (0.05). This unequivocally 
demonstrates that the established models are sufficient 
for predicting values with minimal error and that the 
residuals of the MRR, EWR, and SR models follow a 
normal distribution.

Furthermore, the degree of fitness between the expected 
and actual experimental values has also been assessed 

using a different measure, namely the coefficient of 
determination, or R2. The R2 value represents the ratio 
of the overall variations in the experimental findings 
to the variations explained by the generated model. R2 
ranges from 0 to 1, where a value closer to 1 indicates 
an excellent match between the experimental response 
values and the anticipated response values of the created 
regression model. The resulting R2 values are 0.9635, 

Table 4. ANOVA outcomes of electrode wear rate.
Source Sum of Squares df Mean Square F Value p-value Prob> F
Model 3.859E-005 9 4.288E-006 42.61 < 0.0001 significant

X-I 1.581E-005 1 1.581E-005 157.16 < 0.0001
Y-Pon 1.612E-005 1 1.612E-005 160.23 < 0.0001
Z-Poff 3.860E-006 1 3.860E-006 38.36 0.0001
XY 1.432E-007 1 1.432E-007 1.42 0.2605
XZ 2.216E-007 1 2.216E-007 2.20 0.1686
YZ 1.780E-008 1 1.780E-008 0.18 0.6830
X2 1.063E-008 1 1.063E-008 0.11 0.7518
Y2 4.922E-008 1 4.922E-008 0.49 0.5003
Z2 2.274E-006 1 2.274E-006 22.60 0.0008

Residual 1.006E-006 10 1.006E-007
Lack of Fit 6.597E-007 5 1.319E-007 1.90 0.2484 not significant
Pure Error 3.465E-007 5 6.930E-008
Cor Total 3.960E-005 19

R2 0.9746
Adj R2 0.9517

Adeq Precision 24.076

Table 5. ANOVA outcomes of surface roughness.
Source Sum of Squares df Mean Square F Value p-value Prob> F
Model 19.46 9 2.16 36.21 < 0.0001 significant

X-I 5.68 1 5.68 95.10 < 0.0001
Y-Pon 8.65 1 8.65 144.81 < 0.0001
Z-Poff 2.18 1 2.18 36.59 0.0001
XY 0.82 1 0.82 13.72 0.0041
XZ 0.041 1 0.041 0.68 0.4280
YZ 1.01 1 1.01 16.96 0.0021
X2 1.02 1 1.02 17.01 0.0021
Y2 3.175E-003 1 3.175E-003 0.053 0.8223
Z2 0.010 1 0.010 0.17 0.6882

Residual 0.60 10 0.060
Lack of Fit 0.34 5 0.067 1.29 0.3928 not significant
Pure Error 0.26 5 0.052
Cor Total 20.05 19

R2 0.9702
Adj R2 0.9434

Adeq Precision 24.301
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0.9746, and 0.9702 for the rate of material ablation, tool 
erosion, and hole interior surface roughness, respectively. 
This clearly demonstrates a strong association between 
the dependent qualities and the EDM process factors.

Examination of the impact of EDM process variables 
on responses

In this study, the effects of variations in current, spark 

duration, and discharge interval duration on MRR, EWR, 
and SR are examined using three-dimensional response 
surface graphs. While the third process variable is kept 

Fig. 4. Residual plot of MRR.

Fig. 5. Residual plot of EWR.

Fig. 6. Residual plot of SR.
Fig. 7. Surface graph for a) MRR vs I and Pon, b) MRR vs I 
and Poff, c) MRR vs Pon and Poff.
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at a constant level, two process variables are altered 
during the investigation to observe their impact on the 
outcomes. These response surface plots provide the most 
comprehensive insight into response variations across 
different operational conditions.

Influence of independent controllable variables on 
MRR

Figure 7a illustrates the interaction plot depicting the 
influence of pulse current (I) and pulse-on time (Pon) on 
the material removal rate (MRR). It is evident that MRR 
exhibits a direct proportional relationship with pulse 
current for all values of Pon. This relationship can be 
attributed to the higher concentration of thermal energy 
between the electrodes resulting from the increased 
energy of the sparks. Consequently, higher current levels 
lead to increased melting and vaporization compared 
to lower current levels. Similarly, an increasing trend 
in MRR is observed as sparking time increases. This 

trend is primarily attributed to the longer duration of 
heat energy penetration into the workpiece. Fig. 7b 
displays the interaction effects of current and pulse 
interval on MRR. It is apparent that as the pulse interval 
increases, there is a decrease in material removal from 
the workpiece. This phenomenon can be attributed to 
the lower number of sparks generated and significant 
heat dissipation between subsequent sparks. Similar 
findings were reported in previous studies [14, 41]. The 
interaction plot between Pon and Poff on MRR, depicted 
in Fig. 7c, indicates that at low pulse interval levels, an 
increase in sparking time (Pon) significantly enhances 
MRR.

Influence of independent controllable variables on 
EWR

Figure 8a elucidates the impact of pulse-on duration 
and pulse current on electrode wear rate (EWR). It is 
observed that there is a direct correlation between the 

Fig. 8. Surface graph for a) EWR vs I and Ton, b) EWR vs I and Toff, c) EWR vs Ton and Toff.
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material loss of the electrode and both the pulse duration 
and current. This leads to significant tool wear under high 
current conditions, attributed to the movement of charged 
particles between the electrodes with increasing current. 
Moreover, longer pulses result in increased electrode 
material loss due to prolonged operating times, which 
soften the electrode material and contribute to wear.The 
surface plot depicting the influence of current and pulse 
interval on EWR is presented in Fig. 8b. It is evident 
that an increase in pulse interval leads to a decrease in 
the electrode wear rate. This phenomenon is associated 
with the duration allowed for the electrode to cool down 
between pulses. Additionally, there is a slight increase 
in EWR at higher levels of pulse off-time, which may 
be attributed to the higher energy required to reopen 
the plasma channel.Figure 8c illustrates the interaction 
between Pon and Poff on EWR. It is evident that the 
electrode experiences greater weight loss at maximum 
Pon and minimum Poff compared to other operating 
conditions.

Influence of independent controllable variables on 
SR

Figure 9a illustrates how surface roughness increases 
progressively as current and spark duration increase. The 
formation of deeper and larger craters on the hole wall 
surface primarily stems from the intensity of the emitted 
energy. Fig. 9b illustrates the influence of current and 
pulse off time on surface roughness, clearly indicating a 
trend of decreasing surface roughness as Poff increases.
This phenomenon can be attributed to good particle 
removal and reduced thermal energy intensity with longer 
pulse intervals.The surface plot of surface roughness in 
relation to Pon and Poff is displayed in Fig. 9c.

Optimization with equal importance to all output 
characteristics (i.e., MRR, EWR and SR)

The developed second order regression expressions in 
Eq. (4)-(6) are utilized for the optimization of multi-
response using desirability function approach. In this 
case maximization criteria are opted for MRR. Whereas, 

Fig. 9. Surface graph for a) SR vs I and Ton, b) SR vs I and Toff, c) SR vs Ton and Toff.
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minimization has been chosen for the electrode wear 
and SR. Also, equal weightage is given for all the three 
responses. The independent parametric condition with 
maximum composite desirability is viewed as optimal 
level of parameters. In this study, the obtained ideal 
parameter levels are I - 10 A, Pon - 6 μs, Poff - 5 μs with 
desirability value of 0.549 and it is depicted in Fig. 10.

Hybrid GRA-TLBO algorithm
The development of the hybrid optimization method 

GRA-TLBO stemmed from the desire to harness the 
complementary strengths of Grey Relational Analysis 
(GRA) and Teaching-Learning-Based Optimization 
(TLBO) algorithms. GRA focuses on analyzing relation-
ships between multiple factors, offering insights into 
system behavior and identifying influential variables. 
TLBO, on the other hand, excels in exploring and 
exploiting search spaces to find optimal solutions. This 
integration allows for a comprehensive evaluation of 
parameter interactions and their impact on performance. 
GRA-TLBO operates without requiring complex 
mathematical models, making it suitable for non-linear 
and complex optimization problems. Its ability to 
explore and exploit the search space efficiently ensures 
the identification of optimal parameter combinations, 
leading to improved performance attributes. 

Because of the possibility of discrepancy between the 
enhanced performance of one element and the needs 
of another, multi-response optimisation is complex. 
For multi-response optimisation, the Grey Relational 
Analysis (GRA) is used in many engineering contexts. 
This method simplifies several goals into a single goal 
function, which makes problem solving easier. Through 
the ensuing advancements, the GRA is carried out.

Step 1: Subsequent equations are used to normalise 
the experimental output parameters.,

Normalization for higher-the-better,

 (10)

Normalization for lower-the-better,

 (11)

where "i" is the experimental number and "l" is the 
comparability sequence, and "ai (l)" is the normalised 
value for the acquired response. The lowest value of ai 
(l) for the lth response is represented by min ai (l) and 
the greatest value by max ai (l) for the lth response.

Step 2: The slated normalised experimental response 
and the actual response are correlated, as determined 
by the grey relational coefficient, or GRC. Eq. (12) is 
utilised to compute the value of GRC.

 (12)

where (k) is a GRC, λmin (least deviation sequence) is 
the lowest value of λ (k), and λmax (highest deviation 
sequence) is the highest value of λoi (l). where i.e. λoi 
(l) = |gi (l) ― xi (l)|, ℅ is a unique coefficient which 
sustains between 0 and 1 (usually assumed as Ω = 0.5).

Step 3: Eq. 13 is used to calculate the Grey Relational 
Grade.

 (13)

where, θi GRG of ith trial, n is a number of trials and, 
φi (k) is a GRC.

In the framework of GRA, the highest GRG is ranked 
highest, while the lowest GRG is ranked lowest. Table 
6 shows the calculated GRG values for each of the 20 
experimental run orders.

Fig. 10. Optimized parameter levels for maximum MRR, minimum EWR and SR.



B.R. Senthil Kumar, R. Sivakumar, M. Chrispin Das and V. Muthuraman334

Table 6. Grey relational analysis.

Run
Normalization Grey relational coefficient

GRG RankMRR 
(gm/min)

EWR 
(gm/min)

SR 
(µm)

MRR 
(gm/min)

EWR 
(gm/min)

SR 
(µm)

1 0.85307 0.20000 0.21253 0.77288 0.38462 0.38836 0.487998 18
2 0.47390 0.60000 0.28565 0.48728 0.55556 0.41174 0.534787 7
3 0.43069 0.60000 0.50623 0.46759 0.55556 0.50314 0.502526 14
4 0 1 1 0.33333 1 1 0.502967 13
5 0.93666 0 0.13941 0.88757 0.33333 0.36749 0.513157 11
6 0.87718 0.40000 0.28786 0.80280 0.45455 0.41249 0.496228 16
7 0.84036 0.40000 0.25753 0.75799 0.45455 0.40242 0.500948 15
8 0.54837 0.80000 0.55002 0.52541 0.71429 0.52632 0.520626 9
9 0.94922 0.20000 0 0.90781 0.38462 0.33333 0.506697 12
10 0.14692 0.80000 0.55564 0.36953 0.71429 0.52946 0.469412 19
11 1 0.00000 0.15286 1 0.33333 0.37116 0.595181 4
12 0.30074 0.80000 0.75251 0.41692 0.71429 0.66890 0.529544 8
13 0.23910 0.80000 0.58939 0.39654 0.71429 0.54908 0.699731 2
14 0.80898 0.40000 0.33065 0.72357 0.45455 0.42759 0.555556 5
15 0.68781 0.40000 0.52046 0.61562 0.45455 0.51044 0.710001 1
16 0.72877 0.40000 0.41502 0.64831 0.45455 0.46084 0.543718 6
17 0.62818 0.40000 0.38789 0.57352 0.45455 0.44960 0.51775 10
18 0.70782 0.40000 0.43752 0.63117 0.45455 0.47060 0.488824 17
19 0.68832 0.40000 0.44116 0.61601 0.45455 0.47221 0.686433 3
20 0.72574 0.40000 0.49895 0.64578 0.45455 0.49948 0.44591 20

Fig. 11. TLBO algorithm steps [25].
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TLBO calculations emulate the teaching-learning 
process observed in classrooms. Students initially learn 
from the teacher during the teacher phase, and then they 
share that knowledge with one another during the learner 
phase. With apparent productivity, this technique is 
utilized to separate complex, nonlinear, and linear issues. 
Here, GRG values calculated from the GRA method is 
utilized to reduce the complexity of the process. The 
main goals of this work are, respectively, to increase 
material ablation rate and decrease electrode erosion 
rate and surface roughness. The detailed steps of TLBO 
algorithm are delineated in Fig. 11 [25].

Parameters bounds

 (14)

 (15)

 (16)

Step 1: Select the size of the population (number of 
experiments), Np = 20

Step 2: Using Grey Relational Grading, the developed 
design matrix should be ranked as delineated in Table 8.

Step 3: Creation of new solution in teacher phase 
is delineated in Table 9. Using Eq. (17), new input 
parameters are obtained and which in turn bounded 

within the range as delineated in Eq. (14)-(16).

 (17)

where, Xnew is the new solution, Xbest is the teacher, Tf is 
the teaching factor and the value should be either 1 or 
2, r is the random number and it should range between 
0 and 1 and Xmean is the mean of population, X is the 
current solution.

Step 4: The combined population (Table 10) is 
obtained by combining old responses with the bounded 
new input responses.

Step 5: The GRG is used to optimise the rankings 
from 1 to 20, which make up 50% of the higher-level 
rankings [42, 43]. Table 11 lists the rankings from 1 to 
20 obtained from the teacher phase.

Step 6: Learner phase - Table 12 outlines the 
development of new process factors and objective values 
following interaction amongst the students, who were 
randomly selected from the population.

 (18)

where, Xp is partner solution.
Here, GRG values calculated from the GRA method 

is utilized to reduce the complexity of the process.

Table 7. Initial Random Population.

Run
Input parameter Response

GRG Rank
I Pon Poff MRR EWR SR

1 8 7 6 0.00803 0.003 5.7865 0.487998 18
2 6 6 8 0.00510 0.001 4.1565 0.534787 7
3 8 7 6 0.00855 0.003 5.5245 0.502526 14
4 8 7 6 0.00799 0.003 5.406 0.502967 13
5 8 7 9 0.00688 0.003 5.0235 0.513157 11
6 6 8 4 0.01213 0.004 5.8195 0.496228 16
7 8 7 6 0.00828 0.003 5.508 0.500948 15
8 8 7 6 0.00939 0.003 5.283 0.520626 9
9 8 7 3 0.01479 0.005 6.1965 0.506697 12
10 8 9 6 0.01394 0.005 6.936 0.469412 19
11 6 6 4 0.00626 0.002 4.488 0.595181 4
12 6 8 8 0.00644 0.003 4.692 0.529544 8
13 8 5 6 0.00422 0.001 4.2175 0.699731 2
14 10 8 4 0.01812 0.006 8.058 0.555556 5
15 10 6 4 0.01153 0.004 4.8195 0.710001 1
16 12 7 6 0.01607 0.005 6.0435 0.543718 6
17 10 6 8 0.00593 0.003 4.8295 0.51775 10
18 8 7 6 0.00856 0.003 5.884 0.488824 17
19 4 7 6 0.00493 0.002 3.5245 0.686433 3
20 10 8 8 0.01050 0.005 6.018 0.44591 20

Mean 8 7 6
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Table 9. Continued.

S.No
Combined input parameter New response

GRG Rank
I Pon Poff MRR EWR SR

1 8 7 6 0.00803 0.003 5.7865 0.487998 22
2 6 6 8 0.00510 0.001 4.1565 0.534787 10
3 8 7 6 0.00855 0.003 5.5245 0.502526 18
4 8 7 6 0.00799 0.003 5.406 0.502967 17
5 8 7 9 0.00688 0.003 5.0235 0.513157 15
6 6 8 4 0.01213 0.004 5.8195 0.496228 20
7 8 7 6 0.00828 0.003 5.508 0.500948 19
8 8 7 6 0.00939 0.003 5.283 0.520626 12
9 8 7 3 0.01479 0.005 6.1965 0.506697 16
10 8 9 6 0.01394 0.005 6.936 0.469412 23
11 6 6 4 0.00626 0.002 4.488 0.595181 5
12 6 8 8 0.00644 0.003 4.692 0.529544 11
13 8 5 6 0.00422 0.001 4.2175 0.699731 2
14 10 8 4 0.01812 0.006 8.058 0.555556 7
15 10 6 4 0.01153 0.004 4.8195 0.710001 1
16 12 7 6 0.01607 0.005 6.0435 0.543718 9
17 10 6 8 0.00593 0.003 4.8295 0.51775 13
18 8 7 6 0.00856 0.003 5.884 0.488824 21
19 4 7 6 0.00493 0.002 3.5245 0.686433 3
20 10 8 8 0.01050 0.005 6.018 0.44591 25

Table 8. Teacher phase - updated factors and responses.

S.No
New input parameter Bounded input 

parameter New response
GRG Rank

I Pon Poff I Pon Poff MRR EWR SR
1 8 7 6 8 7 6 0.00775 0.00547 5.26695 0.401358 8
2 5.1 5.45 9.3 5.1 5.45 9 0.00651 0.00125 6.29349 0.374506 15
3 8 7 6 8 7 6 0.00775 0.00547 5.26695 0.401358 8
4 8 7 6 8 7 6 0.00775 0.00547 5.26695 0.401358 8
5 8 7 10.95 8 7 9 0.00854 0.00149 8.21895 0.420427 7
6 5.1 8.55 2.7 5.1 8.55 3 0.01256 0.01057 2.32153 0.555436 3
7 8 7 6 8 7 6 0.00775 0.00547 5.26695 0.401358 8
8 8 7 6 8 7 6 0.00775 0.00547 5.26695 0.401358 8
9 8 7 1.05 8 7 3 0.00697 0.00945 2.31495 0.383944 14
10 8 10.1 6 8 9 6 0.01267 0.00796 6.51343 0.560359 2
11 5.1 5.45 2.7 5.1 5.45 3 0.00494 0.00671 0.38949 0.345281 16
12 5.1 8.55 9.3 5.1 8.55 9 0.01413 0.00261 8.22553 0.293367 20
13 8 3.9 6 8 5 6 0.00284 0.00298 4.02047 0.312646 19
14 10.9 8.55 2.7 10.9 8.55 3 0.009 0.01219 4.24040 0.432358 6
15 10.9 5.45 2.7 10.9 5.45 3 0.00138 0.00833 2.30836 0.635171 1
16 13.8 7 6 12 7 6 0.00419 0.00709 7.18582 0.332884 17
17 10.9 5.45 9.3 10.9 5.45 9 0.00295 0.00037 8.21236 0.314199 18
18 8 7 6 8 7 6 0.00775 0.00547 5.26695 0.401358 8
19 2.2 7 6 4 7 6 0.01021 0.00435 3.94359 0.467708 5
20 10.9 8.55 9.3 10.9 8.55 9 0.01057 0.00424 10.14440 0.513998 4

Table 9. Combined population.
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Table 9. Continued.

S.No
Combined input parameter New response

GRG Rank
I Pon Poff MRR EWR SR

21 8 7 6 0.00775 0.00547 5.26695 0.401358 28
22 5.1 5.45 9 0.00651 0.00125 6.29349 0.374506 35
23 8 7 6 0.00775 0.00547 5.26695 0.401358 28
24 8 7 6 0.00775 0.00547 5.26695 0.401358 28
25 8 7 9 0.00854 0.00149 8.21895 0.420427 27
26 5.1 8.55 3 0.01256 0.01057 2.32153 0.555436 8
27 8 7 6 0.00775 0.00547 5.26695 0.401358 28
28 8 7 6 0.00775 0.00547 5.26695 0.401358 28
29 8 7 3 0.00697 0.00945 2.31495 0.383944 34
30 8 9 6 0.01267 0.00796 6.51343 0.560359 6
31 5.1 5.45 3 0.00494 0.00671 0.38949 0.345281 36
32 5.1 8.55 9 0.01413 0.00261 8.22553 0.635171 4
33 8 5 6 0.00284 0.00298 4.02047 0.312646 39
34 10.9 8.55 3 0.009 0.01219 4.24040 0.432358 26
35 10.9 5.45 3 0.00138 0.00833 2.30836 0.293367 40
36 13.8 7 6 0.00419 0.00709 7.18582 0.332884 37
37 10.9 5.45 9 0.00295 0.00037 8.21236 0.314199 38
38 8 7 6 0.00775 0.00547 5.26695 0.401358 28
39 4 7 6 0.01021 0.00435 3.94359 0.467708 24
40 10.9 8.55 9 0.01057 0.00424 10.14440 0.513998 14

Table 10. Candidate solution based on the non-dominance ranking.

S.No
Combined input parameter New response

GRG Rank
I Pon Poff MRR EWR SR

1 6 6 8 0.0051 0.001 4.1565 0.53479 10
2 8 7 6 0.00855 0.003 5.5245 0.50253 18
3 8 7 6 0.00799 0.003 5.406 0.50297 17
4 8 7 9 0.00688 0.003 5.0235 0.51316 15
5 6 8 4 0.01213 0.004 5.8195 0.49623 20
6 8 7 6 0.00828 0.003 5.508 0.50095 19
7 8 7 6 0.00939 0.003 5.283 0.52063 12
8 8 7 3 0.01479 0.005 6.1965 0.50670 16
9 6 6 4 0.00626 0.002 4.488 0.59518 5
10 6 8 8 0.00644 0.003 4.692 0.52954 11
11 8 5 6 0.00422 0.001 4.2175 0.69973 2
12 10 8 4 0.01812 0.006 8.058 0.55556 7
13 10 6 4 0.01153 0.004 4.8195 0.71000 1
14 12 7 6 0.01607 0.005 6.0435 0.54372 9
15 10 6 8 0.00593 0.003 4.8295 0.51775 13
16 4 7 6 0.00493 0.002 3.5245 0.68643 3
17 5.1 8.55 3 0.01256 0.01058 2.32154 0.55544 8
18 8 9 6 0.01267 0.00797 6.51343 0.56036 6
19 5.1 8.55 9 0.01413 0.00262 8.22554 0.63517 4
20 10.9 8.55 9 0.01057 0.00424 10.1444 0.51400 14
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Based on the top ranking generated following the 
interaction between parameters, the TLBO technique 
was used to identify the global input optimum condition 
from the learner phase.

Verification test
Table 13 presents the optimised parameter settings 

obtained through response surface methodology (RSM) 
and grey relational analysis combined with teaching-

Table 12. Optimal Parameters of RSM and GRA-TLBO optimization techniques.

S.No

Response factors RSM GRA-TLBO

Parameter Setting level
I: 10 amps; 
Pon: 6 µsec; 
Poff: 5 µsec

I: 8.48 amps; 
Pon: 6.22 µsec; 
Poff: 3.34 µsec

1 MRR (g/min) 0.01074 0.01159
2 EWR (g/min) 0.0040 0.00408
3 SR (µm) 4.9395 3.7202

Table 11. Learner phase.

S.No
New input parameter Bounded input parameter New  response

GRG Rank Interaction
I Pon Poff I Pon Poff MRR EWR SR

1 -3.4 -2.46 -3.85 4 5 3 0.01213 0.01058 0.2549 0.587515 8 1 & 20
2 -3.28 -2.02 -0.86 4 5 3 0.00828 0.00797 4.2549 0.495013 17 2 & 19
3 -3.16 -2.58 -3.87 4 5 3 0.00939 0.00262 0.2549 0.512376 16 3 & 18
4 -3.04 -1.14 -3.88 4 5 3 0.01479 0.00424 0.2549 0.577985 11 4 & 17
5 -2.68 -2.8 -2.53 4 5 3 0.00451 0.00584 0.2549 0.564423 14 5 & 16
6 5.52 6 4.68 5.52 6 4.68 0.00648 0.00528 0.4757 0.452976 19 6 & 15
7 5.52 7.44 8 5.52 7.44 8 0.01088 0.00267 2.6887 0.475581 18 7 & 14
8 5.76 7.78 11.98 5.76 7.78 9 0.01183 0.00184 7.9640 0.633411 3 8 & 13
9 8 4.34 7.32 8 5 7.32 0.00319 0.00123 5.3194 0.563502 15 9 & 12
10 8 5.78 7.34 8 5.78 7.34 0.00511 0.00217 1.8252 0.596115 7 10 & 11
11 8.48 7.22 11.98 8.48 7.22 9 0.00878 0.0019 3.5149 0.452541 20 11 & 1
12 8.48 8.22 0.68 8.48 8.22 3 0.00967 0.01111 3.2341 0.582438 9 12 & 2
13 8.48 6.22 3.34 8.48 9 3 0.01159 0.00408 3.7202 0.75722 1 13 & 3
14 10.72 4.12 7.34 10.72 4.12 7.34 0.00063 0.00086 5.6905 0.71055 2 14 & 4
15 10.48 6.22 11.98 10.48 6.22 9 0.0051 0.00121 3.5533 0.603837 5 15 & 5
16 10.48 8.44 2.68 10.48 8.44 3.34 0.00907 0.01149 5.3675 0.610481 4 16 & 6
17 4.992 8.891 1.35 4.992 8.891 3 0.01346 0.01097 3.4983 0.602768 6 17 & 7
18 8.24 9.22 4.68 8.24 9 4.68 0.01217 0.00978 5.2940 0.580355 10 18 & 8
19 4.752 9.331 9.99 4.752 9 9 0.01544 0.00308 8.3909 0.571275 12 19 & 9
20 11.248 9.111 9.33 11.248 9 9 0.01146 0.00489 10.5400 0.566578 13 20 & 10

Table 13. Confirmatory test for optimized process parameters.

S.No

Response factors RSM

Error %

GRA-TLBO

Error %Parameter Setting 
level

I: 10 amps; 
Pon: 6 µsec; 
Poff: 5 µsec

I: 8.48 amps; 
Pon: 6.22 µsec; 
Poff: 3.34 µsec

Predicted Experimental Predicted Experimental
1 MRR (g/min) 0.01074 0.01157 -7.17 0.01159 0.01148 -6.6
2 EWR (g/min) 0.0040 0.0044 -9.09 0.00408 0.00389 4.8
3 SR (µm) 4.9395 4.3286 14.11 3.7202 4.0665 -8.5
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learning-based optimisation (GRA-TLBO) with the 
goal of maximising material removal rate (MRR) while 
minimising electrode wear rate (EWR) and surface 
roughness (SR). Confirmatory experiments were 
conducted for the final optimal factors to evaluate the 
accuracy of both RSM and GRA-TLBO, as illustrated in 
Table 14. The error percentages obtained for RSM and 
GRA-TLBO are ±14% and ±8.5%, respectively. This 
suggests that the novel hybrid technique, GRA-TLBO, 
demonstrates greater reliability in predicting the desired 
responses compared to the desirability function approach 
of RSM.

Scanning electron microscopy analysis
The FESEM image depicting the surface after 

modification using the optimal values determined by the 
RSM method and GRA-TLBO is presented in Figs. 12 
and 13, respectively.

It is evident from Fig. 12 that as the current increases, 
the surface roughness (SR) also increases, leading to 
the emergence of craters, porosity, and other surface 
defects. Additionally, due to SiC's low conductivity, the 
presence of SiC contributes to the formation of a recast 
layer, where residual silicon components remain. The 
primary cause of surface craters and debris generation 
during milling is the elevated temperature. Although 
elevated temperatures in EDM are unavoidable, they 
can be mitigated by applying regulated current for the 
appropriate pulse duration. As depicted in Fig. 13, the 
surface finish was superior with the regulated current 
value derived using the GRA-TLBO algorithm compared 
to the value derived from RSM optimization.

To confirm the presence of reinforcement (SiC) in 
the matrix phase, energy dispersive spectrometer (EDS) 
measurements are performed on Al7050-15SiC prior to 
machining, as depicted in Fig. 14. The graph illustrates 
that the reinforcing components, Si and C, follow the 
chemical constituents of Al7050, namely Al, Zn, and Fe. This indicates that SiC particles are indeed present 

in the Al7050 alloy matrix.
Furthermore, to assess the impact of machining 

on the fabricated composite, the hole created using 
the optimized factors determined by GRA-TLBO is 
subjected to examination, with the resulting EDS graph 
presented in Fig. 15. It is evident that, aside from the 
constituents of the matrix and reinforcement material, 
minor peaks of Cu element are detected. This occurrence 
can be attributed to the transfer of eroded material from 
the copper electrode to the machined surface during the 
machining process. Additionally, it is noteworthy that 
during low pulse off-time, unflushed materials within 
the machining zone solidify on the machined surface, 
forming a recast layer, a phenomenon also documented 
in [44]. Moreover, there is a slight increase in the peak 
level of carbon element in Fig. 15 compared to the 
C element in Fig. 14. This phenomenon may result 
from the breakdown of the dielectric medium at high 
temperatures.

Fig. 12. FESEM micrograph of Al7050-15SiC machined using 
optimized factors from RSM.

Fig. 13. FESEM micrograph of Al7050-15SiC machined using 
optimized factors from GRA-TLBO.

Fig. 14. EDS graph of Al7050-15SiC before machining.
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Conclusion

In this study, the machinability investigation was 
conducted using the diesinking EDM technique, and the 
Al7050-15SiC composite was effectively manufactured 
utilizing the stir cast method. Experimental runs with 
various combinations of process variables, including 
current, pulse-on time, and pulse-off time, were created 
using the central composite design of RSM. Initially, the 
process variables were optimized using the desirability 
function technique to simultaneously fulfill the goals of 
maximum MRR, minimal EWR, and SR. Subsequently, 
a new hybrid optimization method called GRA-TLBO 
was developed to select the best process parameters 
that would yield the required performance attributes. 
Confirmatory studies were conducted to ascertain the 
predictive accuracy of GRA-TLBO and RSM. The key 
findings from this investigation are listed below.

•  The significant terms in the MRR ANOVA findings 
were A (I), B (Pon), C (Poff), BC, and the quadratic 
term of C. Similarly, the most important controllable 
factors for EWR were variables A, B, C, and C². 
For SR, the essential parameters were A, B, C, AB, 
BC, and A².

•  As the pulse current and sparking time increased 
gradually, the response surface graphs demonstrated 
a rising trend for MRR, EWR, and SR. Conversely, 
a declining trend was observed for MRR, EWR, and 
SR as the pulse off duration increased.

•  The optimized parameters achieved using the 
desirability function technique of RSM were I at 
10 amps, Pon at 6 µsec, and Poff at 5 µsec. The 
corresponding values of MRR, EWR, and SR were 
0.01074 g/min, 0.0040 g/min, and 4.9395 µm, 
respectively.

•  Grey Relational Grading (GRG) was utilized in the 
initial step of the TLBO algorithm to rank the input 
factors. The optimized process variables obtained by 
GRA-TLBO were I at 8.48 amps, Pon at 6.22 µsec, 
and Poff at 3.34 µsec. Furthermore, the performance 

metrics associated with the optimized factors for 
GRA-TLBO were as follows: MRR measured at 
0.01159 g/min, TWR at 0.00408 g/min, and SR at 
3.7202 µm.

•  Confirmatory trials were conducted to assess the 
efficacy of the developed models. It was found 
that the GRA-TLBO technique exhibited superior 
predictive capability for the responses, with a lower 
error percentage of ±8.5%, compared to RSM, 
which had an error percentage of ±14%.

•  The EDS graph of the unmachined Al7050-15SIC 
composite revealed the constituents of the matrix 
material and reinforcement. Conversely, the EDS 
graph of the machined surface of Al7050-15SIC 
exhibited minor peaks of Cu element in addition 
to the constituents of the matrix and reinforcement 
phases.

Limitations
The computational complexity of GRA-TLBO 

require significant computational resources and time, 
potentially hindering real-time application. Moreover, 
the generalizability of optimized parameters across 
different operational conditions and material types 
needs validation. Additionally, practical constraints 
such as equipment limitations, material availability, 
and environmental factors may impact the feasibility of 
implementing optimized parameters. Thorough testing 
and validation in industrial environments are crucial 
to ensure that the optimized parameters translate into 
tangible improvements in performance, reliability, and 
cost-effectiveness.

Future Prospects of this work
This research reveals that the GRA-TLBO optimization 

technique proves highly effective in identifying optimal 
values for EDM process parameters, thereby enhancing 
machining performance. The proposed approach holds 
promise for addressing multi-objective problems 
encompassing additional responses like geometrical 
tolerances and dimensional accuracy. Additionally, 
the GRA-TLBO optimization technique offers ideal 
parameters to meet industrial requirements and shows 
potential application across a variety of conventional 
and nonconventional machining processes, such as 
drilling, milling, electrochemical machining, abrasive 
jet machining, wire-electrical discharge machining, etc.
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