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The study investigates the transient response of a cantilever Magneto-Electro-Elastic (MEE) beam subjected to thermal 
loading. A ῿�nite element model utilizing an eight-node quadrilateral element was developed using a FORTRAN program to 
integrate mechanical, electrical, and magnetic ῿�elds. This model was employed to examine the in⿿�uence of stacking sequences 
in layered beams and volume fractions in multiphase MEE beams. To validate the accuracy of the developed model, results 
were compared with those from the commercial ῿�nite element software ANSYS, using a beam composed of piezoelectric 
ceramic material. The comparison con῿�rmed a strong correlation between the results, ensuring the model’s reliability. 
Findings reveal that piezoelectric coupling signi῿�cantly a�ects the mechanical response, while the dynamic responses of 
electrical and magnetic ῿�elds demonstrate complex dependencies on stacking sequences and volume fractions. These insights 
are crucial for understanding the dynamic behavior of layered and multiphase MEE ceramic materials, which hold great 
potential for application as sensors or actuators in active structural systems.

Keywords: Piezoelectric cantilever beam, Magneto-Electro-Elastic materials, Transient thermo-elastic analysis, Mechanical 
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Introduction

Magneto-electro-elastic (MEE) materials exhibit 
significant coupling effects between various physical 
fields, such as electric, magnetic, and mechanical 
fields [1-4]. Due to exceptional coupling effects, 
MEE materials have found widespread applications in 
diverse fields, including sensors, actuators, transducers, 
and energy harvesting devices [5-13]. The integration 
of MEE materials can facilitate the development of 
innovative smart composites alongside traditional 
structural materials [14-17]. The transient response of 
a specialized non-homogeneous MEE hollow cylinder 
subjected to sudden constant pressure and dynamic 
combined loads is investigated by Hou et al. [18]. A 
thermodynamic potential has been employed to derive 
the linear constitutive equations for thermo-piezo-
magnetism [19, 20]. These equations are relevant in linear 
regimes encompassing thermal, magnetic, electrical, 
and mechanical fields. The effect of piezoelectric and 
magnetic constants on displacement, electric potential, 
and magnetic potential across the thickness direction of 
a magneto-electro-elastic (MEE) beam in a temperature 
environment is examined using a steady-state approach 

[10]. By utilizing a variational approach, the general 
coupled field finite element equations that describe the 
dynamic behavior of the thermo-piezo-magnetic medium 
have been derived. Similarly, Jiang and Ding [21] used 
stringent differential operator theorems to provide 
analytical solutions based on the two-dimensional 
fundamental equations of transversely isotropic 
magneto-electro-elastic media. They successfully derived 
distinct eigenvalues expressed through four harmonic 
displacement functions, incorporating mechanical, 
electrical, and magnetic quantities. 

Additionally, an accurate solution for the transient 
response of a multilayered, simply supported magneto-
electro-thermoelastic strip under nonuniform heat input 
was investigated by Ootao and Tanigawa [22]. Analytical 
procedure on a simply supported three-layered BaTiO3-
CoFe2O4 composite strip reveals transient behaviors 
in temperature, displacement, stress, and electric/
magnetic potentials, extendable to arbitrary multilayered 
configurations. The plane stress problem for linear, 
anisotropic, functionally graded magneto-electro-elastic 
plane beams, in which material properties vary arbitrarily 
in the thickness direction, was also examined by Huang 
et al. [23]. For situations such as tension, pure bending, 
cantilever beams with shear force at the free end, and 
cantilever beams under uniform load, they provided 
analytical answers. It has been investigated how to solve 
simply supported multilayered plates with linear magneto-
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electro-elastic characteristics under surface and in-plane 
stresses [24]. The researcher employed the propagator 
matrix method to achieve precise and efficient results for 
multilayered configurations. Findings indicate that the 
response to internal loading varies significantly from that 
of surface loading, particularly in relatively thin plates. 
Additionally, the stacking sequences play a crucial 
role in influencing most physical properties, especially 
electrical and magnetic characteristics. A hybrid method 
of solid mechanics was used to obtain the state vector 
equations for magneto-electro-elastic materials [25, 26]. 
This method views stresses, electric displacements, 
and magnetic inductions as fundamental unknowns in 
addition to displacements, electric potential, and magnetic 
potential. Numerical results for rectangular plates with 
simply supported multi-layered structures under surface 
loading were given. Moreover, the precise solution for 
multi-layered rectangular functionally graded linear MEE 
plates was obtained by Pan and Han [24]. The pseudo-
Stroh formalism is used to find a homogeneous solution, 
assuming that the functionally graded material varies 
exponentially in the thickness direction. Their research 
examines how the induced magneto-electro-elastic fields 
are affected by the exponential factor, magneto-electro-
elastic characteristics, and loading kinds. Ye et al. [27] 
applied the Scaled Boundary Finite Element Method 
(SBFEM) is a semi-analytical numerical technique that 
combines the advantages of both the Finite Element 
Method (FEM) and the Boundary Element Method 
(BEM) to analyze free vibration and transient dynamics 
of composite magneto-electro-elastic (MEE) cylindrical 
shells. Using SBFEM simplifies discretization, avoids 
transverse shear locking, and ensures accurate results. 
Numerical validation confirms excellent agreement 
with published solutions and ANSYS simulations, 
demonstrating practical applicability. Biju et al. [28] 
investigated the the dynamic response of a magneto-
electro-elastic sensor bonded to a cylindrical shell using 
a semi-analytical finite element method. The response 
to internal pressure is analyzed for clamped-free and 
clamped-clamped conditions. Results show maximum 
response at the clamped end, with better load history 
replication at the free end than the middle. Zhou et al. 
[29] studied to improve accuracy in transient response 
simulations of magneto-electro-elastic structures, a cell-
based smoothed finite element model is introduced. By 
incorporating gradient smoothing, this method reduces 
numerical errors, achieves near-exact stiffness, and 
enhances element discretization. It is applied to sensors, 
energy harvesters, and smart devices, outperforming 
standard finite element models. Dhanasekaran et al. 
[30] investigated the behavior of mild steel beams with 
multiphase magneto-electro-elastic, piezoelectric, or 
magnetostrictive patches under temperature variations. 
The finite element method was used to analyze electric 
and magnetic potentials, considering coupling effects. 
The findings offer insights into the behavior of such 

structures under varying temperature conditions. Dai and 
Wang [31] studied the analytical solution to magneto–
thermo–electro–elastic problems in a piezoelectric hollow 
cylinder subjected to various transient loads. This solution 
involves solving the Volterra integral equation of the 
second kind to determine the electric displacement, and 
employs Hankel and Laplace transforms to derive exact 
expressions for transient responses. The methodology is 
validated through numerical calculations, demonstrating 
its applicability to complex coupled problems in magneto–
thermo–electro–elasticity. A dependent variable and a 
special function are introduced to satisfy inhomogeneous 
mechanical boundary conditions, transforming the 
governing equation into a homogeneous form. Using 
separation of variables and boundary conditions, the 
problem is reduced to Volterra integral equations. 
Cubic Hermite polynomials approximate solutions, 
determining transient responses of displacement, stress, 
and potentials [32, 33]. Zhou et al. [34] examined the 
transient magnetoelectric (ME) response of a symmetric 
Terfenol-D/PZT/Terfenol-D laminate structure under 
transient currents. Time-domain output voltages were 
analyzed for square, sine, and triangle transient voltages. 
Damping oscillations at the natural frequency were 
observed with fast-changing currents, weakening when 
the transient current width matched the laminate’s natural 
period. Bodaghi and Shakeri [35] analytically examined 
the free vibration and dynamic response of simply 
supported functionally graded piezoelectric cylindrical 
panels under time-dependent blast pulses. Equations 
of motion are derived using Hamilton’s principle and 
the first-order shear deformation theory, incorporating 
Maxwell’s equations.

But according to the literature review, finite element 
method has been addressed with limited researchers to 
investigate the transient response of a magneto-electro-
elastic beam exposed to a temperature environment. 
Building on this foundation, the current study examines 
the transient response of mechanical, electrical, and 
magnetic fields in layered and multiphase MEE cantilever 
beams subjected to thermal loading. The constitutive 
model proposed by Sunar et al. [19] is employed for 
this analysis. Two stacking sequences are considered 
for the layered beam: B/F/B (BaTiO3/CoFe2O4/BaTiO3) 
and F/B/F (CoFe2O4/BaTiO3/CoFe2O4). The volume 
percentage of BaTiO3 in the multiphase MEE beam is 
varied in increments of 20%, from 0% to 100%. 

Basic Equations

Without body force, free charge, free current density, 
or an internal heat source, the generalized governing 
differential equations for magneto-electro-thermoelastic 
issues can be expressed as follows:

, , , , 0, 0, 0,i j i i i i i i iu D B q Ts r rh= = = = - 
  (1)
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Where T0 denotes the reference temperature and the 
r mass density. The constitutive equation for a three-
dimensional solid that is linearly magneto-electro-elastic 
with thermal effects can be formulated using a Cartesian 
coordinate system (x3) [19], 

i ij j ik k ik k ic S e E d Hs b= - - - Q

l lj j lk k lk k lD e S E m H pe= + + + Q

l lj j lk k lk k lB d S m E Hm t= + + + Q

i j k k k kS p E H ah b t= + + + Q     (2)

where i, j = 1,...., 6 and i, j = 1,...., 3. h, Bl, Dl and si 
represent the components of entropy per unit volume, 
magnetic induction, electric displacement, and stress, 
respectively. mik, eik and cij are the coefficients of magnetic 
permeability, dielectric, and elastic, respectively. mik, 
dik and eik are magneto-electric, piezomagnetic and 
piezoelectric material coefficients respectively. Q, tl, 
pl and bi are the temperature difference, pyromagnetic 
constant, pyroelectric constant, and stress temperature 
coefficient, respectively. Ek, Hk and Sj are vectors for 
the electric field, magnetic field, and linear strain tensor, 
respectively. 0/Ea C Tr= , CE is the specific heat of the 
material. Q = T - T0, is the absolute temperature and 
T0 is the reference temperature. The coupled three-
dimensional constitutive Eq. (2) for a magneto-electro-
elastic solid in the plane is taken to be isotropic for the 
present analysis. Where s1 = sx1, s2 = sx2,s3 = sx3, s4 = 
tx2x3, s5 = tx1x3, s6 = tx1x2, D1 = Dx1, D2 = Dx2, D3 = Dx3, B1 

= Bx1, B2 = Bx2 and B3 = Bx3.

Finite element formulation
An eight-node quadratic element is used to model a 

MEE beam. The typical finite element mesh of the eight-
node quadrilateral element and MEE cantilever beam is 
shown in Fig. 1. 

Temperature (Q), axial displacement (u1), transverse 
displacement (u3), electric potential (f), and magnetic 
potential (y) are the five degrees of freedom that each 
node possesses. The elemental degrees of freedom 
(d.o.f.) arrays are as follows:

Mechanical d.o.f  1 1 2 2 8 8
1 3 1 3 1 3{ } { .... }T

eu u u u u u u=

Electric d.o.f     1 2 8{ } { ... }T
ef f f f=

Magnetic d.o.f  1 2 8{ } { ... }T
ey y y y=

Temperature d.o.f  1 2 8{ } { ... }T
eQ = Q Q Q  (3)

Eq. (4) provides the corresponding nodal quantities. 
The displacements ({ } { }1 3

Tu u u= ), electric potential 
(f), magnetic potential (y), and temperature (Q) within 
the element can all be represented in terms of element 
shape functions. 

{ } [ ]{ }, [ ]{ }, [ ]{ },

[ ]{ }

e e e
u i

e

u N u N N

N
f yf f y y

Q

= = =

Q = Q  (4)

where

1 2 8

1 2 8

0 0 ... 0
[ ]

0 0 ... 0u

N N N
N

N N N
 

=  
 

[ ]1 2 8[ ] [ ] [ ] ...N N N N N Nf y Q= = =   (5)

1 2 8, ,...,N N N  are shape functions. 
For plane stress problems, consider magnetic induction 

B2 = 0, electric displacement D2 = 0, and stress components 
2 4 6 0s s s= = = . One way to express the strain 

displacement relation is,

1

1
1

1
x

uS S
x

∂
= =

∂
; 

3

3
3

3
x

uS S
x

∂
= =

∂
,

1 3

31
5

3 1
x x

uuS S
x x

∂∂
= = +

∂ ∂
   (6)

The array of strain-displacement relation is given by,

{ } 3 31 1

1 3 3 1

T
u uu uS

x x x x
 ∂ ∂∂ ∂

= + ∂ ∂ ∂ ∂ 

 
  (7)

The following expression (Eq. (8)) can be used to 
connect the strains to the nodal degree of freedom:

{ } [ ]{ }u eS B u=       (8)

Where [Bu] is the relationship between strain - 
displacement.

[ ]

81 2

1 1 1

81 2

3 3 3

8 81 1 2 2

3 1 3 1 3 1

0 0 ... 0

0 0 ... 0

...

u

NN N
x x x

NN NB
x x x

N NN N N N
x x x x x x

 ∂∂ ∂
 ∂ ∂ ∂ 
 ∂∂ ∂

=  ∂ ∂ ∂ 
 ∂ ∂∂ ∂ ∂ ∂
 

∂ ∂ ∂ ∂ ∂ ∂ 

 (9)

The relationship between electric field and electric 
potential can be written as,

1
1

xE E
x
f∂

= = -
∂

; 3
3

zE E
x
f∂

= = -
∂

   (10)

The electric field vector array is provided by

1 3

{ }E
x x
f f ∂ ∂

= - - ∂ ∂ 
   (11)

The following expression can be used to connect the 
electric field vector to the electric potential as a nodal 
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degree of freedom.

{ } { }eE Bf f =      (12)

The matrix [Bf], referred to as the electric field–
electric potential matrix, is constructed as given below

81 2

1 1 1

81 2

3 3 3

...

...

NN N
x x x

B
NN N

x x x

f

∂∂ ∂ 
 ∂ ∂ ∂   =  ∂ ∂ ∂
 ∂ ∂ ∂ 

  (13)

The relationship between magnetic field and magnetic 
potential is as follows: 

1
1

xH H
x
y∂

= = -
∂

; 3
3

zH H
x
y∂

= = -
∂

    (14)

The magnetic field vector array is given by

{ }
1 3

H
x x
y y ∂ ∂

= - - ∂ ∂ 
  (15)

The magnetic field vector can be expressed as a nodal 
degree of freedom in relation to the magnetic potential 
using the following equation:

{ } { }eH By y =     (16)

The magnetic field-magnetic potential matrix [By] is 
written as

81 2

1 1 1

81 2

3 3 3

...

...

NN N
x x x

B
NN N

x x x

y

∂∂ ∂ 
 ∂ ∂ ∂   =  ∂ ∂ ∂
 ∂ ∂ ∂ 

  (17)

The temperature gradient is as follows 

{ }'
1 3x x

 ∂Q ∂Q
Q =  ∂ ∂ 

  (18)

The following statement can be used to relate the 
temperature gradient to the temperature field as a nodal 
degree of freedom.

{ } [ ]{ }' eBQQ = Q   (19)

The temperature gradient-temperature difference matrix 
[BQ] is written as

[ ]
81 2

1 1 1

81 2

3 3 3

...

...

NN N
x x x

B
NN N

x x x

Q

∂∂ ∂ 
 ∂ ∂ ∂ =

∂ ∂ ∂
 ∂ ∂ ∂ 

  (20)

The reduced coefficients for plane stress problems 
are derived in terms of material constants. Reduced 
coefficients replace the coefficients lkm . The various 
reduced coefficient matrices derived for the plane stress 
problem are given. Considering the body force {  f  }, the 
virtual displacement principle can be written [15, 33]

0( { } { } { } { } { } { } { })

{ } ({ } { }) { } { }
q

T T T

A

T T

A A A

S E D H B T dA

u f dA u dA qdAu t
s

d s d d d h

d r d d

- - -

= - + + Q

Q∫

∫ ∫ ∫





  (21)

where the sign for variance is d. Eqs. (8), (12), (16), (19), 
and (2) allow an expansion of each term in the virtual 
work expression as

{ } { }

{ } [ ] ([ ][ ]{ } [ ]( [ ]{ })

[ ]( [ ]{ }) { }[ ] { })

{ } ([ ]{ } [ ]{ } [ ]{ } [ ]{ })

T

A

Te e e
u u

A
e T e

e T e e e e e e e e
uu u u u

S dA

u B c B u e B

d B N dA

u K u K K K

f

y

f y

d s

d f

y b

d f y
Q

Q

= - -

- - - Q

= + + - Q

∫

∫
 (22)

( { } { })

{ } [ ] ([ ] [ ][ ] [ ]( [ ]{ })

[ ]( [ ]{ }) { }[ ] { })

{ } ([ ]{ } [ ]{ } [ ]{ } [ ]{ })

T

V
Te T T e e

u
V

e T e

e T e e e e e e e e
u

E D dA

B e B u B

m B p N dA

K u K K K

f f

y

f ff fy f

d

d f h f

y

d f f y
Q

Q

-

= + -

+ - + Q

= - - + Q

∫

∫
 (23)

( { } { })

{ } [ ] ([ ] [ ][ ] [ ]( [ ]{ })

[ ]( [ ]{ }) { }[ ] { })

{ } ([ ]{ } [ ]{ } [ ]{ } [ ]{ })

T

V
Te T T e e

u
V

e T e

e T e e e e e e e e
u

H B dA

B d B u m B

B N dA

K u K K K

y f

y

y yf yy y

d

d y f

m y t

d y f y
Q

Q

-

= + -

+ - + Q

= - - + Q

∫

∫
  (24)

0

0

( { })

{ } ( [ ]){ } [ ]{ } { } ( [ ]{ })

{ } ( [ ]{ }) [ ] { })

{ } ( [ ]{ } [ ]{ } [ ]{ } [ ]{ })

V

e T T e T e
u

V
T e T e

e T e e e e e e e e
u

T dA

T N B u p B

B a N dA

C u C C C

f

y

f y

d h

d b f

t y

d f y

Q

Q

Q Q Q QQ

- Q

= - Q + -

+ - + Q

= Q - + + - Q

∫

∫











 



  (25)

'{ } { } { } [ ] ( [ ][ ]{ })

{ } ( [ ]{ })

T Te T e

V V
e T e e

q dA B B dA

K

d d λ

d

Q Q

QQ

Q = Q - Q

= Q - Q

∫ ∫
 (26)

{ } ({ } { }) [ ]{ })

{ })

{ } [ ] ({ }

{ } ({ } [ ]

T

A

Te T e
u u

A
e T e e e

m uu

u f u dA N u

u

u N f dA

u f M

d r rd

d

- = -

= -

∫ ∫ 



 

   (27)
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1{ } { } { } [ ]{ } { } { }T e T e e T e
u

A A

u t dA u N t dA u T
s s

d d d= =∫ ∫
 

    (28)

2{ } { } [ ]{ } { } { }
q q

e T e e T e

A A

q dA N q dA Td d d QQ = Q = Q∫ ∫
 

(29)

The following matrix form can be used to explain the 
equation above.

0 0 0 00 0 0
0 0 0 00 0 0 0
0 0 0 00 0 0 0

0 0 0 0

0 0 0

e e e
uu

e e

e e

e e e ee e
u

e e e e
uu u u u
e e e e
u

e e e e
u

e

M u u

C C C C

K K K K
K K K K
K K K K

K

f y

f y

f ff fy f

y yf yy y

f f
y y

Q Q Q QQ

Q

Q

Q

QQ

      
      

      + +               - -Q Q       
 -
 - -
 - -


-

 

 

 

 

0
0

e ee
u u

e

e

ee

f Tu

T

f
y

Q

    +
   

    =           Q     

 

 (30)

where the Eq. (30) defines the various elemental matrices 
as

[ ] [ ] [ ][ ] , [ ] [ ] [ ][ ]
T Te e

uu u u u u
A A

K B c B dA K B e B dAf f= =∫ ∫

[ ] [ ] [ ][ ] , [ ] [ ] [ ][ ]
T Te e

u u
A A

K B d B dA K B B dAy y ff f fh= =∫ ∫

0[ ] [ ] [ ][ ] , [ ] [ ] { } [ ]
T Te e T

u u
A A

K B B dA C T N B dAyy y ym bQ Q= =∫ ∫

0 0[ ] [ ] { } [ ] , [ ] [ ] { } [ ]
T Te T e T

A A

C T N p B dA C T N B dAf f y ytQ Q Q Q= =∫ ∫

[ ] [ ] { }[ ] , [ ] [ ] [ ][ ]
T Te T e

u u
A A

K B N dA K B m B dAfy f ybQ Q= =∫ ∫

[ ] [ ] { }[ ] , [ ] [ ] { }[ ]
T Te T e T

A A

K B p N dA K B N dAf f y y tQ Q Q Q= =∫ ∫

0[ ] [ ] [ ][ ] , [ ] [ ] [ ][ ]
T Te e

A A

C T N a N dA K B B dAλQQ Q Q QQ Q Q= =∫ ∫

[ ] [ ] [ ] , { } [ ]{ }
Te e

uu u u u u
A A

M N N dA f N f dAr= =∫ ∫

{ } [ ] { } , { } [ ]
q

Te e
u u

A A

T N t dA T N qdA
s

Q Q= =∫ ∫
 

(31)

In this study, the pyroelectric and pyromagnetic 
constants are excluded for magneto-electro-elastic 
materials. Therefore, Eq. (30) can be expressed as

0 0 0 00 0 0
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0 0 0 00 0 0 0

0 00 0 0 0
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  (32)

When all element contributions are combined from 
Eq. (32), the equation of motion can be expressed as

[ ]{ } [ ]{ } [ ]{ } { }M v D v K v F+ + =    (33)
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The Newmark b technique is used to solve Eq. (33) for 
the transient response of displacement, electric potential, 
and magnetic potential. 

Validation
The commercial finite element program ANSYS is 

used to evaluate the current formulation for examining 
the thermo-elastic behavior of a piezoelectric cantilever 
beam. Fig. 2 illustrates the schematic of the piezo-
thermo-elastic cantilever beam, which has a length of 
1m and a thickness of 0.006 m and is subjected to a 
transient thermal gradient of 20 °C. 

The finite element model used in the FORTRAN 
Programming, which was created for magneto-electro-
thermo-elastic analysis utilizing only temperature and 
displacement nodal degrees of freedom, is seen in 
Fig. 1. A four-node PLANE13 quadrilateral coupled field 
element with three degrees of freedom per node—axial 
displacement, transverse displacement, and temperature—
is used to represent the thermo-elastic cantilever beam 



Dhanasekaran Rajagopal, A. Kumaravel, D. Senthilkumar, P. Balashree, V. Maruthamuthu and S. Mirdhun272

in ANSYS. For this analysis, a mesh size of 30 × 6 is 
chosen following a convergence study.

The temperature distribution and thermally induced 
vibrations of the elastic beam, related to the stiffness 
coefficient of the piezoelectric material, are validated 
against ANSYS results. The results for 1s are shown 
in Fig. 3, depicting temperature buildup across the 
thickness in close alignment with ANSYS outcomes. 
Fig. 4 illustrates the thermally induced vibration of 
the cantilever beam under transient thermal loading, 
also showing close agreement with ANSYS results. To 
confirm the accuracy of the piezoelectric component, a 
static analysis under steady-state temperature distribution 
was carried out because ANSYS does not provide 
transient piezo-thermo-elastic analysis. At the cantilever 
beam’s fixed end, there is no electric potential. The 
greatest electric potential created in the piezoelectric 
cantilever beam, along with the axial and transverse 

displacements at the free end, are compared in Table 
1. The findings indicate that ANSYS and the current 
study accord well.

The FORTRAN Program has been independently 
validated for transient thermo-elastic investigations and 
the coupling of piezo terms using the two validation 
studies mentioned above. 

Fig. 1. Cantilever beam discretization using finite elements and an eight-node quadrilateral element.

Fig. 2. Schematic model of cantilever piezoelectric beam.

Fig. 3. Comparison of temperature build-up across the thickness 
direction.

Fig. 4. Comparison of mechanical response of cantilever thermo-
elastic beam.

Table 1. Comparison of displacement at free end and maximum 
electric potential of a piezoelectric cantilever beam under 
specified temperature gradient.

Description Present ANSYS
Displacement in axial direction 
(u3) in m 0.03233 0.03232

Displacement in transverse 
direction (u3) in m -0.02487 -0.02485

Electric potential (f) in V 245.03 244.13
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Results and Discussion

The temperature, mechanical, electric, and magnetic 
responses of multiphase and multilayer MEE beams to 
transient thermal loading are considered for the present 
study. The physical layout of a stacked MEE beam is 
depicted in Fig. 1. The material properties and thermal 
properties are used from existing literature [30]. The 
dimensions of the beam are: length (l) = 1 m, thickness 
(t) = 0.006 m. In the present study, a 30 × 6 mesh size 
is chosen. At the cantilever beam’s fixed edge, both the 
electric and magnetic potentials are zero ( 0f y= = ).  
Fig. 2 displays the thermal boundary conditions. Eight 
noded plane stress elements are used to model the 
layered and multiphase MEE beam. The B/F/B and 
F/B/F stacking sequences of a multilayer MEE beam 
are taken into consideration. Various volume fractions 
of BaTiO3 in the BaTiO3-CoFe2O4 composite make up 
the multiphase MEE beam. For the study, the volume 
fractions 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 are taken into 
account. A study on multiphase and multilayer MEE 
cantilever beams is carried out. For 2s, the results are 
plotted. 

Temperature Response
The thermal boundary conditions for the layered and 

multiphase MEE beam are uniform along the length and 
vary only across the thickness (Fig. 2). The temperature 
histories at different points along the thickness of the 
layered MEE beam with B/F/B and F/B/F stacking 
sequences are shown in Fig. 5 and 6. 

Due to an increase in thermal conduction (approximately 
21%) in the piezomagnetic phase, the temperature 
buildup is observed to be higher for the F/B/F stacking 
sequence. Fig. 7(a) to 7(f) illustrate the temperature 
distributions across the thickness of multiphase MEE 
beams with varying volume fractions. As the volume 
fraction increases, the temperature distribution decreases, 
a trend attributed to the thermal conductivity of the 
piezoelectric material.

Mechanical Response
The thermally induced vibrations of a layered MEE 

cantilever beam subjected to transient thermal loading, 
focusing on the B/F/B and F/B/F stacking sequences 
is studied. It is assumed that each layer has an equal 
thickness. The mechanical response is plotted at the free 
end of the MEE cantilever beam. The effect of coupling 
on the mechanical response of layered MEE beams with 
B/F/B and F/B/F stacking sequences is illustrated in Fig. 
8(a) and (b), respectively. Layered MEE beams with a 
B/F/B stacking sequence exhibit a greater sensitivity to 
coupling effects in terms of mechanical reaction. This is 
attributed to the presence of additional piezo components, 
which enhance the coupling effects.

Fig. 9 demonstrates the influence of the B/F/B and 
F/B/F stacking sequences on the mechanical response of 
layered MEE cantilever beams. The mechanical response 
is greater in layered MEE cantilever beams with a B/F/B 
stacking sequence compared to those with an F/B/F 
stacking sequence. This difference is attributed to the 
larger stiffness coefficient of the piezomagnetic phase, 
indicating that the mechanical response is dependent on 
the system’s overall stiffness.

Furthermore, to verify the results, the uncoupled 
mechanical responses of stacked MEE beams with 
B/F/B and F/B/F stacking sequences are compared with 
those obtained from ANSYS. The comparison of the 
uncoupled mechanical responses is presented in Fig. 10, 
showing a strong agreement between the ANSYS results 
and the current findings.

Fig. 11(a) to (f) shows the effect of coupling on the 
mechanical response of multiphase MEE cantilever 
beams with different volume fractions. It is observed 
that the effect of coupling is to produce the phase shift 
on mechanical response. The phase shift is due to the 
coupling of the multiphase MEE system and is quite 
different on volume fraction 0.2. The frequency of the 
coupled system is higher due to coupling for all volume 
fractions whereas it is lower for multiphase MEE beam 
with volume fraction 0.2. The effect of the BaTiO₃ 
volume fraction in the BaTiO₃-CoFe₂O₄ composite on 

Fig. 5. Temperature build-up across the thickness for layered 
MEE beam with B/F/B stacking sequence.

Fig. 6. Temperature build-up across the thickness for layered 
MEE beam with F/B/F stacking sequence.
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Fig. 7. Temperature build-up across the thickness for multiphase MEE beam with volume fraction (a) 0.0 (b) 0.2 (c) 0.4 (d) 0.6 (e) 
0.8 (f) 1.0.

Fig. 8. Effect of coupling on mechanical response of layered MEE beams for (a) the B/F/B stacking sequence and (b) the F/B/F 
stacking sequence.
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Fig. 11. Effect of coupling on mechanical response for multiphase MEE cantilever beam with volume fraction (a) 0.0 (b) 0.2 (c) 
0.4 (d) 0.6 (e) 0.8 (f) 1.0. 

Fig. 9. Mechanical response of stacked MEE beams with B/F/B 
and F/B/F stacking sequences as a function of stacking sequences. Fig. 10. Comparison of the thermo-elastic cantilever beam's 

mechanical response with the F/B/F and B/F/B stacking 
sequences.
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the mechanical response of a multiphase MEE cantilever 
beam is illustrated in Fig. 12. The mechanical response 
of the multiphase MEE beam is influenced by the 
thermal load applied. The magnitude of the response is 
primarily determined by the system’s stiffness, which 
decreases as the volume fraction increases. Consequently, 
this reduction in stiffness leads to an increase in the 
magnitude of the system’s mechanical response. Fig. 13 
presents the comparison of the uncoupled mechanical 
response of the multiphase MEE system with varying 
volume fractions, showing a strong correlation between 
the ANSYS results and the current study.

Electric Response
Variations in the electric response for stacked MEE 

beams with B/F/B and F/B/F stacking sequences are 
illustrated in Fig. 14(a) and (b), respectively. The 
electric response is plotted at the position of maximum 
deflection in the stacked MEE cantilever beam. It is 
clear that the electric response mirrors the displacement 
pattern. Notably, the layered MEE beam with the B/F/B 
stacking pattern displays a greater electric response 
magnitude. For both stacking sequences, the top layer 
experiences a larger electric response due to its higher 
thermal expansion. The variation in electric response 
for multiphase MEE beams with volume percentages 

of 0.2, 0.4, 0.6, 0.8, and 1.0 is illustrated in Fig. 15(a) 
through (e). At a volume fraction of 0.0, the piezoelectric 
coefficients are zero, resulting in no electric response. 
The multiphase MEE beams with volume fractions of 
0.2, 0.4, 0.6, and 0.8 exhibit an odd characteristic in their 
electric response. This may be attributed to the strain 
constant being zero for these volume fractions. Since the 
strain constant e15 is still present, the electric response 
of the volume fraction representing pure piezoelectric 
material aligns with the displacement pattern.

Magnetic Response
The magnetic response of stacked MEE beams 

with B/F/B and F/B/F stacking sequences is shown in 
Fig. 16(a) and (b). The magnetic response is greater 
in stacked MEE beams with F/B/F stacking sequences 
compared to those with B/F/B stacking sequences. The 
magnetic response of the multiphase MEE cantilever 
beam with volume fractions of 0.0, 0.2, 0.4, 0.6, and 0.8 
is illustrated in Fig. 17(a) to (f). At a volume fraction of 
1.0, the piezomagnetic coefficients are zero, resulting 
in no magnetic response. The multiphase MEE beam 
with a volume fraction of 0.2 shows a greater magnetic 
response compared to the other volume fractions. 
As expected, volume fraction 0.0 exhibits a higher 
magnetic potential response than those of 0.4, 0.6, and 
0.8; however, volume fraction 0.2 also demonstrates 
a greater magnetic potential response than volume 
fraction 0.0.

Fig. 12. Effect of volume fraction of BaTiO3 in BaTiO3 – CoFe2O4 
composite on the mechanical response for multiphase MEE beam. 

Fig. 13. Comparison of the mechanical response of multiphase 
thermo-elastic cantilever beam.

Fig. 14. Variation of electric response for layered MEE beam 
with B/F/B and F/B/F stacking sequence.
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Fig. 15. Variation of electric response for multiphase MEE beam with volume fraction (a) 0.2 (b) 0.4 (c) 0.6 (d) 0.8 (e) 1.0 for 
location 1 and 2.

Fig. 16. Variation of magnetic response for layered MEE beam with (a) B/F/B stacking sequence and (b) F/B/F stacking 
sequence.
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Conclusion

Using the finite element method, a computer program 
has been developed to analyze the transient responses of 
displacement, electric potential, and magnetic potential 
in multilayer and multiphase MEE cantilever beams. 
The results are validated against the commercial finite 
element program ANSYS using two methods. First, 
the temperature and thermally induced vibrations are 
confirmed through transient thermo-elastic analysis, 
as ANSYS does not address the transient behavior 
of coupled piezo-thermo-elastic problems. Next, the 
coupling terms are verified with the steady-state behavior 
of the piezoelectric cantilever beam under steady-state 
temperature distribution. The study presents the effects 

of stacking sequence and volume fraction on the thermal, 
mechanical, electric, and magnetic responses, along 
with the impact of coupling on mechanical response. 
It is observed that piezoelectric coupling significantly 
influences mechanical response, while the dynamic 
responses of electric and magnetic fields exhibit complex 
relationships with stacking sequences and volume 
fractions. This understanding is crucial for exploring 
the dynamic characteristics of layered and multiphase 
MEE materials for use as sensors or actuators in active 
structures.
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