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Introduction: Ceramic tile surface defect detection is crucial for ensuring product quality. This study proposes an integrated 
approach combining feature engineering and a Defect Fuse Classifier for accurate defect detection. Methods: The proposed 
model utilizes Python and splits the collected data into 70% for training and 30% for testing. Purpose: The purpose 
section explicitly states the objectives of the study. It highlights the research goals, such as evaluating the effectiveness of 
the proposed methodology in detecting ceramic tile surface defects and exploring the impact of parameter variations on 
detection performance. Results: Comparative analysis with state-of-the-art methods is conducted using various metrics such 
as sensitivity, specificity, accuracy, precision, FPR, FNR, NPV, F-Measure, and MCC. (a) For a Training Rate of 70%: The 
proposed Defect Fuse Classifier outperforms existing models with an accuracy of 97.4%, precision of 88.5%, sensitivity of 
88.5%, specificity of 98.5%, F-Measure of 88.5%, MCC of 87%, NPV of 98.5%, FPR of 1.4%, and FNR of 11.4%. Conclusion: 
This study introduces a novel deep learning approach for ceramic tile surface defect detection, encompassing data acquisition, 
pre-processing, feature extraction, feature selection, and deep learning-based defect detection. The proposed Defect Fuse 
Classifier, integrating CNN, Bi-LSTM, and RNN, demonstrates superior performance, making it a promising solution for 
defect detection in ceramic tile surfaces.
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Introduction

Ceramic tile is a popular construction decoration, with 
mechanization and automation in manufacturing. The 
flaws like dirt, scratches, pinholes, uneven color, and 
corners can occur during the ceramic tile-making process 
[1]. High mechanical strength ceramic tile preparation 
reduces raw material consumption, manufacturing 
costs, waste emissions, and transportation costs, thereby 
improving the cost-performance ratio of goods [2]. 
Ceramic tile has chemical stability, design diversity, 
and stain resistance, but its high energy consumption 
and pollution emissions harm the environment despite 
its economic contributions [3]. Automated equipment 
is used for tile size and flatness checks, while manual 
labor is still used for surface quality examination, with 
defects detected through texture methods, with simple 
ones visible [4].

The industrial sector faces challenges in maintaining 
product quality in ceramic tile production, which is 
evaluated using automated visual assessment. Improving 
defect identification accuracy is a challenging task 
that can affect manufacturing quality, customer trust, 
and business earnings [5]. The ceramic tile industry 

utilizes quality control and defect detection at various 
manufacturing stages, often automated using computer 
vision and image processing techniques, enhancing 
efficiency and effectiveness [6]. Defects in ceramic tiles 
can be caused by unreliable manufacturing equipment, 
production procedures, and raw ingredients, resulting 
in physical harm, structural weaknesses, and cosmetic 
issues, affecting the tiles’ structural integrity and safety 
[7]. The technology develops an automatic visual 
inspection system that can detect surface fractures as thin 
as a hair’s width, evaluating its classification performance 
using network design optimization strategies and data 
augmentation methodologies [8]. Utilizing industrial 
cameras and image processing algorithms, machine 
vision inspection technology offers a novel method for 
identifying surface flaws in ceramic tiles [9].

Efficient quality control and performance of ceramic 
materials rely on non-destructive assessment techniques. 
The industry seeks automated computer-assisted 
inspection solutions to eliminate subjectivity and cost 
inefficiencies [10]. In the defect identification process, 
neural networks, specifically CNN, are commonly used. 
CNN is used to detect fractures and surface defects in 
raw images. Multiple CNN design algorithms exist, and 
developing the optimal CNN model for a specific task 
requires expertise and effort [11]. CNN-based target 
measurement algorithms have demonstrated impressive 
results in various industries. These algorithms have 
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proven invaluable in the manufacturing industry’s 
quality control procedures, especially when it comes to 
measuring measurements and identifying product flaws. 
CNN-based target measurement algorithms have also 
been used in the aerospace sector to check for flaws and 
irregularities in aircraft components. These algorithms 
may discover surface flaws, fissures, and abnormalities 
that could jeopardize the aircraft’s structural integrity by 
analysing photos taken by inspection cameras or drones. 
Research has indicated that CNN-based algorithms 
exhibit higher sensitivity and dependability when 
compared to manual inspection methods or conventional 
image processing approaches.

The Faster Region-based convolution neural network 
(R-CNN) model employs the Soft-NMS method to detect 
flaws and combines multiple layers’ features. Faster 
R-CNN serves as a recognition framework with robust 
feature expression and easily modifiable structure [12].

According to the HSV color space, the defect 
discriminator was built using support vector machines 
(SVM) for two classes after the defects were separated 
using the conventional saliency detection approach. 
The color histogram characteristics for segmented 
defect rectangles were retrieved. At last, the algorithm 
produced the desired result of increasing fault detection 
accuracy [13]. The brightness histogram is widely 
used for identifying defects due to its simplicity and 
low complexity. The LBP offers improved accuracy 
but requires longer computation time compared to 
the luminance histogram [14]. A basic step in image 
analysis is edge detection, which includes locating the 
borders between various areas of a picture. A well-liked 
technique for edge identification in many applications 
is the Canny edge detection algorithm [15]. This paper 
aims to find the ceramic tile surface defect detection with 
integrated feature engineering and defectfuse classifiers.

The main contribution of this research work:
●   To  introduce  a  new  optimization  model:  The 

proposed new hybrid optimization model for 
feature selection. The model used the Arithmetic 
optimization Algorithm and Dingo optimization 
respectively.

●   To introduce a new defectfuse classifier model for 
surface defect detection: The considered defectfuse 
classifier model is the combination of CNN, Bi-
LSTM, and RNN.

Literature Review

In 2020, Wang et al. [16] explored the increasing 
popularity of vision-based inspection methods in industrial 
manufacturing, focusing on surface flaw identification. 
It suggests a technique to minimize false positives that 
combines feature comparison analysis with adversarial 
and unsupervised learning.

In 2022, Nogay et al. [17] addressed the application 
of CNNs in deep machine learning to recognize 

ceramic flaws, highlighting the significance of both cost 
containment and product quality. It suggested using 
thermographic methods and contrasted 1D and 2D 
CNNs. Defect detection accuracy and resilience were 
significantly increased with DCNN models with transfer 
learning, according to a case study utilizing a pre-trained 
AlexNet-like model.

In 2022, Jin et al. [18] focused on developing a deep 
learning system for Automated Surface Defect Inspection 
(ASDI) in decorative ceramics. After preprocessing the 
images and training YOLOv3 on faulty images, they 
achieved a 94.90% detection accuracy at 25 frames 
per second. The decorative ceramics sector benefited 
economically from this algorithm’s increased inspection 
efficiency and quality.

In 2021, Sušac et al. [19] introduced a multi-line 
signal change detection method for identifying flaws 
in ceramic tile images, enhancing defect identification 
precision and effectiveness. It emphasized technology 
transfer for quality assurance in the ceramic tile sector, 
significantly contributing to image processing and flaw 
identification.

In 2021, Rai et al. [20] discussed the usage of deep 
learning for finding ceramic surface defects instead 
of laborious human examination. It examined deep 
learning techniques, with the greatest outcomes coming 
from ensemble learning. Customization and flexibility 
were provided via deep learning. The paper reviewed 
relevant literature with an emphasis on image-based 
manufacturing fault identification.

In 2023, Boovaneswari et al. [21] examined the 
application of AI’s deep neural networks are being 
used to identify defects in ceramic tiles, a shift from 
human inspection to image processing techniques. This 
involves addressing issues like form similarity and fabric 
classification, using various algorithms and techniques.

In 202, Qian et al. [22] explained that the framework 
automates the color-separation process for ceramic 
tiles, reducing human judgment. It uses HSV color 
space histogram statistics for preprocessing and feature 
extraction, training an SVM model, and balancing 
training time and accuracy.

In 2020, Le et al. [23] covered a learning-based 
method that makes use of tiny picture datasets to identify 
surface flaws. The authors suggested a technique for 
surface fault identification that made use of machine 
learning. The study brought attention to the difficulty 
of dealing with sparse data and offered a way around it.

In 2021, Junior et al. [24] discussed the importance of 
early detection of ceramic facade fractures in construction 
to ensure building integrity and passenger safety. Deep 
learning and image processing have improved crack 
identification systems, while image segmentation 
identifies fracture sites. Table 1 tells about the research 
gaps identified in the existing works. 

Research Gap
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Several authors have addressed the pressing research 
gaps in ceramic tile defect detection, each proposing 
distinct methodologies to tackle this challenge. Wang et 
al. (2020) aimed to develop an unsupervised technique 
for patterned texture surface images, filling the void 
in efficient defect detection without manual labeling. 
Nogay et al. (2022) targeted the detection of subtle 
deformations, addressing the delay in identifying faults 
in ceramic products, a gap often overlooked in defect 
detection systems. Jin et al. (2022) sought to automate 
decorative ceramic flaw inspection, addressing the need 
for sophisticated checks in this domain. Sušac et al. 
(2021) focused on signal change detection methods, 
a crucial area for enhancing efficiency in ceramic tile 
flaw detection processes. Rai et al. (2021) investigated 
deep learning techniques for industrial product surface 
problem detection, bridging the gap in efficient quality 
inspection methodologies. Boovaneswari et al. (2023) 
contributed to improving defect detection through deep 
neural networks, aiming to address the efficiency gap in 
quality control processes. Qian et al. (2021) proposed 
a color-separation framework based on the HSV color 
space and SVM model, addressing the need for advanced 
color-based defect detection techniques. Le et al. 
(2020) focused on learning-based defect identification, 
especially in scenarios with limited image datasets, 
filling a significant research gap in data-driven defect 
detection approaches. Junior et al. (2021) utilized deep 
learning and automated optical inspection to detect 
ceramic tile flaws more accurately, addressing the gap in 
advanced defect detection methodologies. These studies 
collectively contribute to advancing defect detection in 
the ceramic tile industry, addressing key research gaps 
and enhancing quality control processes.

The constraints noted in prior studies on ceramic tile 
fault identification are intended to be addressed by the 
suggested model. First off, our model provides a complete 
approach to defect detection by combining a variety of 
deep learning approaches, including CNN, Bi-LSTM, 
and RNN. This overcomes the drawbacks of individual 
methods as noted by Wang et al. (2020), Nogay et al. 
(2022), and Rai et al. (2021). Through this integration, 
the difficulties mentioned by Jin et al. (2022) and Sušac 
et al. (2021) are overcome and defects, including small 
deformations and patterned texture surface pictures, may 
be detected more accurately.

In addition, our model addresses the issues raised by 
Rai et al. (2021) and Le et al. (2020) about the availability 
of labeled data by employing sophisticated optimization 
techniques like ADOA and DOX for feature selection 
and fault classification. Through the utilization of these 
methods, our model is able to efficiently extract pertinent 
information from photos of ceramic tiles without 
requiring a great deal of human labeling, which improves 
defect detection procedures’ scalability and efficiency.

Additionally, as mentioned by Boovaneswari et al. 
(2023) and Junior et al. (2021), our model integrates 

a hybrid defect fusion classifier that combines the 
characteristics of different deep learning architectures, 
minimizing the constraints associated with individual 
approaches. This method boosts overall quality control 
effectiveness in the ceramic tile manufacturing sector 
and guarantees reliable fault identification in a variety 
of manufacturing scenarios. Overall, by fusing cutting-
edge deep learning techniques with creative feature 
selection algorithms, our proposed model provides a 
comprehensive response to the difficulties in ceramic 
tile defect detection. This advances the state-of-the-art in 
quality control procedures for ceramic tile manufacturing 
and overcomes the limitations found in earlier research.

Proposed Methodology

Overall Architecture 
Defect detection in ceramic tile manufacturing is 

crucial for maintaining integrity, safety, and aesthetics. 
Machine Learning, trained on specific datasets, may 
not adapt to evolving defect types. Deep learning helps 
identify intricate patterns and minimizes the need for 
human feature engineering by learning and extracting 
features from images.

In this research work, a new deep learning-based 
ceramic tile defect detection developed by the mentioned 
stages of the following: (i) Data Acquisition (ii) Image 
pre-processing (iii) Feature Extraction (iv) Feature 
Selection (v) Deep Learning based defect detection 

Step 1: Data Acquisition
The dataset utilized in this investigation originates 

from the Alibaba Tianchi competition. The images are 
gathered by two separate lighting circumstances. In 
conclusion, a total of 4956 pictures were employed and 
saved in JPG format by the dimensions of 8192 × 6000 
pixels. The dataset comprises six discrete classifications 
for defects observed on the external surface of ceramic 
tiles, namely, abnormalities in the borders, irregularities 
in the corners, imperfections resembling white dots, 
flaws in the light-colored blocks, flaws in the dark-
colored blocks, and malfunctions in the openings.

Step 2: Image Pre-processing
The collected raw images are pre-processed via 

Median Filtering and Image Augmentation (rotation, 
flipping, brightness adjustments)

Step 3: Feature Extraction
From the pre-processed images, features like HOG, 

LBP, Color Histograms, Gabor Filters, and Edge Detector 
are extracted.

Step 4: Feature Selection 
From the extracted features, the optimal features 

are selected using new hybrid optimization Algorithm. 
The Proposed hybrid optimization Algorithm is a 
combination for Arithmetic Optimization Algorithm and 
Dingo Optimizer, respectively.

Step 5: Deep Learning based defect detection
The defects in the tiles are identified via the new 
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Defectfuse Classifier. This Defectfuse classifier is 
developed by combinin Deep Learning classifications 
like CNN, Bi-LSTM, and RNN, respectively. Finally, 
result from voting classifiers is validated.

Evaluation Metrics: The performance of the model 
is evaluated using various metrics such as accuracy, 
precision, recall, F1-score, and area under the receiver 
operating characteristic curve (AUC-ROC). These metrics 
provide insights into the model’s ability to correctly 
classify defective and non-defective tiles, as well as its 
trade-offs between false positives and false negatives.

Preprocessing 
Preprocessing plays a crucial role in ceramic tile 

defect detection, and its importance can’t be overstated. 
It involves a series of image enhancement and cleaning 
techniques applied to raw images before defect detection 
algorithms are employed. Adjusting image contrast and 
brightness can make defects more visible. By enhancing 
the contrast between defects and the background, subtle 
defects that might be initially hard to spot become more 
apparent. Preprocessing techniques like edge detection 
help identify boundaries and edges within the image. 
Detecting edges can assist in segmenting the image and 
pinpointing defect locations.

In this research work the median filtering and image 
augmentation in pre-processing is done. 

Median Filtering
Median filtering is the method employed in the 

realm of digital image processing to diminish noise and 
undesired variations while conserving crucial structural 
characteristics. It is particularly effective in removing 
“salt and pepper” noise, which is random, isolated pixels 
with extreme values [25]. The preprocessing method is 
highly regarded in surface defect detection, improving 
image quality and efficiency. It enhances image quality, 
making them suitable for visual scrutiny and automated 
identification of defect detection algorithms.

Steps to calculate Median Filtering
❖  A set of random variables is given. , , .. ,W W W WO1 2 f= ^ h  

The directive statistics W W W( ) ( )M2 f# # #  are 
arbitrary variables. Considered by Ordering the 
Numbers of Wp in cooperative order. The median 
value is then expressed as per Eq. (1).

 (1)

Where M = 2K+1 is the median rank. The median is 
utilized in an assortment of denoising and smoothing 

Fig. 1. Overall design for the proposed model.
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methodologies, particularly for signals that have been 
tainted by abrupt noise. It is acknowledged as a 
dependable evaluator of the positional element of a 
dispersion.

❖  The two-dimensional median filter for a grayscale 
input image with intensity values wi,l is defined as 
per Eq. (2).

  (2)

where V stands for the window that the filter can be 
used on. We examine M×M symmetric square windows 
with M = 2N+1, for the rest of the research, where 
M = (M 2+1)/2 is the median rank. Presumably, this is 
the filter version that is most frequently used.

❖  The median filter is useful for identifying specific 
image attributes by examining its output distribution 
and comparing it to other filters. However, its 
non-linear nature presents a significant challenge 
in theoretical investigations into the relationship 
between input and output distributions.

❖  Consequently, the widely recognized fact is that 
the input samples are indistinguishable. The 
typical Cumulative Distribution Function HY for 
productivity samples yi,l and source samples wi,l 
with Cumulative Distribution Function HW is 
provided as per the Eq. (3).

 (3)

The sample median of input models with a standard 
dispersal is a unique yet fascinating example. , 
which was displayed to asymptotically (as ) trail 
the standard distribution as per Eq. (4).

 (4)

Typically, the combined arrangement of neighboring 
pixels has significance since close pixels in filtered 
images are slightly connected due to their overlapping 
windows. The M×M median filter with suggested input 
is HW(w). It generates an equation for both outcome 
pixels’ bivariate dispersion yr and ys (P), Hy(yr, ys). Even 
under the unrealistic premise that pixel intensities are in 

the case with Appendix (B) calculation, it is validated 
that defining median filtered images potentially poses 
challenges.

Image Augmentation 
Image augmentation is extensively utilized technique 

in computer vision, machine learning, and deep learning. 
It artificially expands the dataset by applying different 
transformations to existing images. These changes may 
include cropping, rotating, flipping, adjusting brightness, 
and resizing, among other things. Tasks involving 
object identification, image segmentation, and image 
classification benefit greatly from image augmentation 
[26].

❖  Image augmentation allows you to artificially 
expand your dataset by generating additional 
images through various transformations. More data 
helps reduce overfitting in deep learning, where a 
large dataset is frequently associated with improved 
model performance. 

❖  Augmentation enhances the utility of labeled data 
by generating additional examples without manual 
annotation, and it enables models to recognize 
defects with different characteristics and patterns, 
ensuring optimal surface problem detection.

❖  Augmentation improves surface defect detection 
models’ ability to identify new flaws beyond the 
initial training set, reducing overfitting, especially 
in small datasets. It enhances the model’s 
generalizability to new data, not just memorizing 
the training set.

3.3 Feature Extraction 
The images from the pre-processing are extracted by the 

Feature extraction process. Feature extraction in ceramic 
tile defect detection involves capturing and representing 
essential characteristics from the input images to enable 
effective analysis and classification. Detecting surface 
defects frequently requires manipulating high-dimensional 
data, including images. Excessive dimensionality raises 
the possibility of overfitting and increases computational 
complexity. Feature extraction is important in ceramic 
tile surface defect detection process.

In this work, features such as HOG, LBP, Color 
Histogram, Gabor Filters, and Edge Detectors are 

Fig. 2. Image recognition using HOG.
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extracted from the pre-processed images. 
3.3.1 Histogram Of Oriented Gradient (HOG)
HOG is the feature extraction technique used in 

computer vision and image processing. It serves a 
multitude of purposes, encompassing object detection 
and image classification. The utility of HOG is especially 
evident in its ability to detect and identify objects or 
patterns within images [27]. HOG offers a cost-effective 
method for detecting ceramic tile defects, helping 
localize their positions within images. It’s effective in 
detecting edges and gradients, identifying fine edges and 
abrupt changes in the tile’s surface, which may indicate 
defects like cracks, chips, or surface irregularities. This 
information is crucial for quality control and repair.

Steps to calculate HOG Features
❖  Select the input image (pre-processed image) 

whose HOG characteristics need to be computed. 
128 by 64 pixels, or 128 pixels in height by 64 
pixels in width, is the required scale for the images. 
Enhancing performance on the site safety detection 
test was the main goal of employing this type of 
identification. 

❖  The gradients of the image must be calculated 
before the HOG feature can be computed. A 
directed shift in pixel intensity along the v-axis 
and w-axis is known as an image gradient. The 
gradient vector of pixels at point (v, w) represents 
as per the Eq. (5)

  (5)

Where f (v, w) is the pixel intensity at coordinates v 
and w; hv and hw are the gradient in v and w direction, 
respectively. The magnitude, n(v, w) and phase, q(v, 
w) of the gradient, then can be calculated using the 

following Eq. (6) and Eq. (7), respectively.

Magnitude   (6)

Phase   (7)

Where hv and hw are the gradient in v and w direction, 
respectively

The gradient matrices are divided into 8×8 cells 
to form a block once the gradient of each pixel is 
determined. Each block is then used to compute a nine-
point histogram. A nine-point histogram consists of 
nine bins, each representing a range of angles of twenty 
degrees. In Fig. 3, a nine-bin histogram is shown with 
values assigned based on computations. Each of these 
histograms might be represented as histogram with bins 
corresponding to angle intensity in the bin.

There are 64 distinct values in a block, so the 
computation is done for each of these values. 

Number of bins = 9(starting from 0o to 180o)
step size (Dq) = 180o/Number of bins = 20o

Each Lth bin, Bin is separated as per the Eq. (8):

  (8)

The center value of every bin is:

  (9)

The lth bin and the value supplied to the lth and (l + 1)th 
bins is computed for every cell in the block. The value 
is determined using as per Eq. (10), Eq. (11), Eq. (12).

   (10)

   (11)

Fig. 3. Representation of a 9-bin histogram.

Fig. 4. Example of technique for calculation of 9 bin histograms.
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   (12)

❖  A block’s bin is an array, to which the values of 
Ol and Ol+1 are attached at index for kth and (l +1) 
bin, respectively, determined for every pixel.

❖  The resultant matrix, as indicated by the 
computations above, is 16×8×9.

❖  The 9-point histogram matrix was combined into 
a new block (2×2), and the overlapping clubbing 
with an 8-pixel stride was performed, resulting in 
a 36-feature vector. Fig. 4. shows the method for 
calculating 9-bin histograms.

   (13)

❖  The K2 norm is employed to standardize the 
standards of fb for each block:

   (14)

❖  Before normalizing, the value l is first calculated 
through the subsequent Eq. (15), Eq. (16).

   (15)

   (16)

❖  The normalization process reduces contrast 
discrepancies in images of the same object by 
normalizing each brick in sequence. A feature 
vector is created by accumulating 36 data points, 
15 blocks in a vertical direction and 7 blocks in 
a horizontal direction. The cumulative length for 
HOG features is calculated to be 3780.

Local Binary Patterns (LBP)
LBP is texture descriptor employed in computer 

vision and image analysis. When analyzing a pixel’s 
surrounding neighborhood, LBP takes into account the 
local patterns of pixel intensities in that area [28]. LBP is 
highly effective in describing and capturing local texture 
patterns in images. It is especially helpful in applications 
like texture segmentation and classification where texture 
information is essential. It generates histograms of the 
frequency of different local patterns, providing a concise 
representation of the texture distribution in an image or 
region.

Steps to Calculate LBP Features
❖  LBP is a technique that can analyze local textures 

in ceramic tile images, detecting variations that 
may indicate defects and can be used to extract 
texture features.

❖  The integration of LBP and deep learning in 
identifying defects on ceramic tile surfaces can 
improve detection accuracy by recognizing texture 
patterns, enhancing generalization, and providing a 
more reliable method.

❖  The combination of handcrafted features like 
LBP with deep learning techniques leverages the 
strengths of both approaches for more effective 
defect detection.

Assume that Ie = I(V, W) is an arbitrary central pixel 
at the position (V, W) and It = I(Vt, Wt) is a neighboring 
pixel surrounding Ie, with as per the Eq. (17), Eq. (18).

   (17)

   (18)

T is the total number of neighboring pixels  
and S is the distance from Ie at which the pixels are 
sampled. The traditional LBP descriptor as per the 
following Eq. (18), Eq. (19)

   (19)

   (20)

Where Ie denotes gray value of centre pixel. It denotes 
gray value of its neighbors. S stands for number of 
neighbor and T be the radius of neighborhood.

The actual 3×3 construction is shown in both Fig. 
5(a) and 5(b). The structure in the figure has vectors 
of “[3,1,5,9,3,2,2,6,9]”. The sign vector in figure is “[-
1,1,1,1,-1,-1,1,1]”. It apparent that the novel regional 
binary pattern, which codes the binary digit as the 8-bit 
string “01110011” uses only the sign vector 

❖  The LBPS,T operator generates (2T ) output values, 
forming dissimilar binary patterns by T pixels in 
neighbor set. Rotation effects are eliminated by 
assigning unique identifiers. The image rotates, 
causing gray It to move circle perimeter, Ie eliminate 
the rotation effect, and a unique identifier is assigned 

Fig. 5. (a) 3×3 sample block. (b) Sign Component.



Ceramic tile surface defect detection with integrated feature engineering and defect fuse classifier 579

to each rotation using invariant local binary 
patterns. as per Eq. (21). 

 (21)

Where ri means rotation constant. ROR (v, b) be a rou 
nd bitwise turn right on T-bit number v, b times. Finally, 
the lowest of computed values of b=0 to t-1 are chosen.

Color Histogram
A color histogram is a visual representation of color 

distribution within an image, providing a numerical 
assessment of each color’s quantity. It is created using the 
image’s color channels, where each channel’s histogram 
represents the intensity distribution for its corresponding 
color [29]. These are highly efficient feature vectors can be 
used in various image processing tasks, including object 
identification, content retrieval, and flaw identification, 
by condensing the color composition of an image.

Steps to Calculate Color Histogram Feature 
❖  Color histograms can be effectively used in ceramic 

tile defect detection to analyze and characterize 
the color distribution within tile images. It can 
inform the setting of adaptive thresholds for defect 
detection. 

❖  Adaptive thresholding techniques based on the 
color distribution can dynamically adjust the 
sensitivity of the defect detection algorithm.

❖  The RGB color space has three color component 
values. In our method, we utilized the HSV color 
space which aligns with the human visual system.

  ○   The  HSV  color  space  is  used  to  extract  color 
information from ceramic tile photos for defect 
detection in the context of the defect discriminator. 
The defect discriminator makes use of the hue, 
saturation, and value components of the picture 
pixels to detect minute color changes that might 
be signs of defects such surface imperfections, 
fissures, or discolorations.

  ○   The  hue  component  can  be  used  by  the  flaw 
discriminator to separate particular colors linked 
to defects, such dark patches or discolored areas. 
The value component provides information about 

the defect’s brightness or contrast in relation 
to the surrounding areas, while the saturation 
component can aid in determining how intense 
these colors are.

  ○   The  defect  discriminator  can  efficiently  discern 
between normal and faulty regions in ceramic tile 
photographs by evaluating these color properties 
in the HSV color space. This allows for precise 
and efficient defect identification in production 
processes.

❖  RGB image changed into HSV color space as per 
the Eq. (22), Eq. (23), Eq. (24) respectively. (Here 
R is represented as S, G is represented as H and 
B is represented as A)

  (22)

      (23)

     (24)

The color space values in an image are represented 
by the wavelength (D), saturation (S), and the intensity 
value (J). range from 0 to 1, representing the intensity of 
an image, with 0 representing black and 1 representing 
white.

❖  A set of bins representing individual colors in the 
color space being utilized is color histogram. The 
quantity of colors in the image determines the 
number of bins. A vector is what defines a color 
histogram as per the Eq. (25).

 (25)

Where p denotes the color bin within the color histogram 
and D[p] denotes the count for pixels with color p in 
image, while n signifies total count of bins utilized in 
color histogram. Every pixel in image is allocated to 
bin in the color histogram based on its color. The value 
for each bin represents count of pixels with similar 
color. The normalized color histogram, denoted as D, 
is defined as per the Eq. (26).

Fig. 6. Two different images having same histogram.
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 (26)

Where , t is total number of pixels of images

However, the color histogram has limitations of its 
own. The right photos cannot be retrieved if two images 
have the same color percentage but differ in how the 
colors are dispersed. Fig. 6. shows two unconnected 
images that have the same color histogram.

We extract the color histogram of the image and we 
get a n-dimensional color feature vector: 

   (27)

   (28)

Histogram intersection method is used to measure the 
distance X1 between query image R and image T in 
image database.

Gabor Filter 
Gabor filters are used to analyze and characterize 

textures in images, identifying patterns like edges, lines, 
and regions with specific textures. They are effective 
in identifying edges and curves, and their reaction to 
texture and intensity changes is noticeable [30]. They are 
particularly useful for capturing and analyzing textures 
on ceramic tile surfaces, enhancing textural patterns 
indicative of defects.The images serve as a feature 
representation that highlights relevant information about 
the texture and structure of the ceramic tile surface. 
These features can be fed into machine learning models 
for defect classification.

Steps to calculate Gabour Filter
(1) Gabour image generation 
The following equation, which shows eight amplitudes 

(la) and eight phases (qb), respectively, yields a total of 
64 Gabor filter as per the Eq. (29). Each Gabor filter 
measures 3×3.

 (29)

Where, ,

A picture with a gabor filter PGabour. The Gabor filter and 
the IGray are constructed by convolutionally operating on 
the former as per the Eq. (30).

 (30)

(2) Steps for Gabour Image Selection
The images that have the lowest Inverse Difference 

Moment (IDM) value, N are chosen. The image with 
a significant variation in values between pixels is said 
to have a small IDM. With the chosen Gabor Image, 

efficient feature extraction for detection is achievable. 
The subsequent steps are in the Gabor image selection 
method.

Step 1: For each phase, construct average image 
 for the Gabor image as per the Eq. (31).

 (31)

Step 2: The image of the Gabor filter is normalized 
 as per the Eq. (32).

 (32)

Step 3: According to the above equations the Gabor 
filter image  becomes a GLCM, from 
which the average matrix Tb is derived.

Step 4: Values for IDM features are taken out of each 
average matrix Tb as per the Eq. (33).

 (33)

Step 5: The highest IDM feature values among the 
top M Gabor filter images are chosen.

Edge Detectors
An edge detector is an essential part of computer 

vision as well as the processing of images that locates 
areas in an image where there are noticeable changes in 
color or brightness. Edges often correspond to boundaries 
between objects or changes in texture, and detecting 
them is fundamental for various tasks, including object 
recognition, image segmentation, and feature extraction 
[31]. Understanding the composition and substance of 
images begins with edge detection. The Canny edge 
detector can be employed in ceramic tile surface defect 
detection for various purposes, contributing to the 
identification and characterization of defects.

Steps to calculate Edge Detectors
❖  The detected edges can be utilized as cues for 

segmenting and isolating defective regions on 
ceramic tiles. It helps in defining the contours 
of defects, facilitating the creation of regions of 
interest for subsequent analysis.

❖  Canny edges serve as features that capture the 
discontinuities and transitions in intensity on 
ceramic surfaces. Machine learning models that 
categorize and describe various fault kinds may 
be trained using extracted edge characteristics as 
input.

❖  Gaussian filtration is used to smooth the gradient’s 
direction and amplitude in the images. The 
gradient’s magnitude and direction are found using 
the finite difference method of the first-order partial 
derivative, as per Eq. (34), Eq. (35), Eq. (36), Eq. 
(37), Eq. (38) respectively.

  (34)
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   (35)

   (36)

   (37)

   (38)

Here, the variable f represents gray value of image. 
The symbol T is used to denote the gradient amplitude 
in the V direction, while R represents the gradient 
amplitude in the W direction. The variable N is defined 
as the amplitude of the point under consideration. Lastly, 
the symbol q corresponds to the gradient direction, 
specifically the angle at which it is measured.

Feature Selection 
The models from the extraction are selected in 

the feature selection process. Feature selection is a 
relevant attribute improves machine learning models 
by enhancing efficiency, preventing overfitting, and 
aiding interpretability. In deep learning, neural networks 
automatically learn features, and techniques such as 
regularization, attention mechanisms, and ensemble 
methods contribute to implicit feature selection. The 
features are selected via ADOA (Arithmetic Dingo 
Optimization Algorithm).

The significance of the newly developed hybrid 
optimization model for feature selection is noteworthy 
when it comes to the identification of surface defects 
in ceramic tile, and it may also find use in other fields. 
Here are some main justifications for its significance:
●   Enhanced  Performance  of  the  Model:  This 

integration of AOA and DOA, makes it possible 
to search for ideal characteristics more thoroughly 
and effectively, which improves the model’s 
performance in defect identification.

●   Effective Feature Selection: Finding the most pertinent 
characteristics while lowering dimensionality is 
made possible by feature selection, which is a 
crucial stage in the creation of machine learning 
models. By effectively navigating the feature space 
and choosing the most discriminative features for 
defect detection, the hybrid optimization model 
maximizes the feature selection procedure.

●   Adaptability  to  Data  Characteristics:  The  hybrid 
optimization model’s adaptive nature enables it to 
dynamically modify its methods in response to the 
properties of the incoming data. This flexibility is 
especially important for defect identification, as 
different types and patterns of flaws may occur, 
and it guarantees that the model can handle a wide 
range of circumstances.

Overall, the proposed hybrid optimization model for 
feature selection plays a crucial role in improving the 

efficiency, effectiveness, and interpretability of defect 
detection models, thereby contributing to higher product 
quality and operational efficiency in industries such as 
ceramic tile manufacturing.

Arithmetic Optimization Algorithm
Arithmetic Optimization Algorithms improve 

numerical computation efficiency and accuracy by 
optimizing precision, minimizing errors, and improving 
mathematical performance. They address challenges in 
floating-point arithmetic, reduce complexity, and explore 
parallel computing for faster execution [32]. Adaptive 
approaches dynamically adjust algorithms based on input 
characteristics, crucial in scientific computing, machine 
learning, and numerical simulations.

Population-based algorithms use random solutions, 
while detection-based algorithms use randomization for 
optimal solutions. Optimization involves exploration and 
exploitation, with exploration preventing local solutions 
and exploitation improving the precision of answers 
during the investigation phase.

Initialization phase
The collection of candidate solutions for AOA is 

chosen randomly and starts the optimization process (W), 
as indicated in matrix Eq. (39). 

  (39)

Before commencing work, the AOA ought to determine 
which search phase exploration or exploitation. The 
following search phrases employ the Math Optimizer 
Accelerated (MOA) function, whose factor was obtained 
using as per the Eq. (40).

   (40)

MOA(B_Iter) is the function value at the Cthiteration, 
as identified as per Eq. (40). B_Iter defines current 
iteration between 1 and greatest number of iterations 
(m_Iter). The characters Min and Max, respectively, 
refer to minimum and maximum values of accelerated 
function.

Exploration phase
The AOA explores using the division (d) and 

multiplication (m) operators, which have scattered values 
and cannot easily approach the objective. By using four 
mathematical operations, the exploration search finds the 
nearly ideal solution. The operators (d and m) assist with 
the exploitation step of the search process.

The exploration stage of the AOA involves randomly 
investigating the search area using the division (d) 
and multiplication (m) operators. The Math Optimizer 
Accelerated (MOA) function guides this process based 
on a random number. The first operator (d) is activated 
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when t2 < 0.5, and it performs its task until completed. 
During this time, the second operator (m) remains idle. 
If t2 >= 0.5, the second operator (m) takes over the 
current task rather than d. The operators are activated 
based on specific conditions and promote diversification 
and exploration through a stochastic scaling coefficient. 
The exploration phase in AOA efficiently searches 
for better solutions while promoting exploration and 
diversification. The position-updating equations are 
proposed to facilitate the process as per the Eq. (41).

 (41)

where wd,p(B_Iter) indicates the pth position in the dth 
solution in the current iteration, wd,p(B_Iter + 1) indicates 
the dth solution in the following iteration, and best(wp) 
represents the pth place in the best solution thus far, KCi 
and ACi represent upper and lower limit values of pth 
slot, respectively, while e is a small integer. The search 
process is controlled by m, which has a fixed value of 
0.5 based on the tests reported in this work as per the 
Eq. (42).

   (42)

Where (m_Iter) is extreme number of iterations, (mop) 
is coefficient, and function value at uth iteration indicates 
mop (B_Iter) signifies the current iteration. The work’s 
experiments indicate that the exploitation accuracy across 
repetitions, denoted by the sensitivity limit a, is set at 5.

Exploitation phase
The AOA employs an exploitation approach based 

on mathematical computations using Subtraction (s) 
or Addition (a) operators. These operators have low 
dispersion characteristics and are proficient at detecting 
near-optimal solutions. The exploitation phase utilizes 
these operators to facilitate enhanced communication 
and support within the optimization process. 

The initialization of this stage is determined by the MOA 
function value, with specific requirements outlined. The 
exploitation operators thoroughly examine dense regions 
in the search area to approach and discover enhanced 
solutions based on two primary search strategies. These 
strategies are effectively represented as per the Eq. (43).

 (43)

Deep search is used to explore the search space, employing 
two main operators, s and a, to exploit the space. The 
first operator s is activated based on a condition, while 
the second operator a remains inactive. If t3 is less 
than 0.5 a takes over. These procedures resemble the 

partitioning approach but are designed to avoid getting 
stuck in local areas, ensuring optimal solutions and 
maintaining solution diversity. Stochastic values are 
generated to ensure exploration throughout iterations.

The final position in a search can be stochastic, 
estimating the near-optimal solution, while other solutions 
update their positions around this solution.

Algorithm 1 pseudocode of AOA
Start AOA
1.  Setup the AOA Limits (Arithmetic Optimization Algorithm) 

a, m.
2.  Set the location of resolutions arbitrarily. (Solution: i=1,…,M.)
3. While (B_Iter < m_Iter) do
4.   For specified resolution calculate the Fitness Function 

(FF)
5.   Find finest answer as yet.
6.  Utilizing Equation (40) modernize the mov
7.  Using Equation (40) update the mov
8.  For (d=1 to Answers) do
9.   For (p=1 to Answers) do
10.    Create arbitrary value among [0,1] (t1, t2, and t3)
11.    If t1 > mov then
12.     Exploration phase
13.     If t2 > 0.5 then
14.      (1) Implement division math operator (d “÷”)
15.       Using 1st rule in the Equation (41) apprise the d th 

solution
16.     Else
17.       (2) Implement multiplication math operator (m “×”)
18.       employing 2nd rule in Equation (41) upgrade the d th 

solution
19.     End if
20.    Else
21.     Exploitation phase
22.     If t3 > 0.5 then
23.     (1) Implement subtraction math operator (s “-”).
24.      Utilizing 1st rule in the Equation (43) update the d th 

solution.
25.     Else
26.     (2) Employ addition math operator (m “+”).
27.      Using 2nd rule in the Equation (43) update the d th 

solution.
28.     End if
29.    End if
30.   End for
31.  End for
32.  BIter = BIter + 1 
33. end while
34. Return best result (w).
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Dingo Optimization Algorithm
The Dingo Optimization Algorithm mimics the behavior 

of dingoes to solve optimization problems. It employs a 
population-based approach. Dingoes collaborate to find 
the optimal solution through exploration and exploitation 
of solution space. Each dingo represents a potential 
solution, also the algorithm evolves the population by 
adapting to the fittest solutions. The Dingo Optimization 
Algorithm is effective in diverse fields such as engineering, 
machine learning, and logistics, as it harnesses principles 
from the natural behavior of dingoes.

Mathematical Models
Dingo optimization is carried out in this part by 

the mathematical design of the model of the hunting, 
surrounding, and attacking prey. 

Encircling
Dingoes are intelligent and locate their prey, surrounded 

by pack and alpha. The social hierarchy of dingos suggests 
the objective prey represents the best agent strategy, as 
the search region is unknown. Other search companies 
are updating their plans for potential strategies. The 
dingoes’ behavior is patterned as per the Eq. (44), Eq. 
(45), Eq. (46), Eq. (47), Eq. (48).

   (44)

   (45)

   (46)

   (47)

   (48)

Where  is distance among dingo and prey.  be 
position vector (prey).  be the position vector (dingo). 
 and  be a Coefficient vector.  and  be the Random 

vector in [0,1].  be a Linear reduction from 3 to 0 at 
all iterations. P be 1, 2, 3, ……, Pmax. Pmax be Maximum 
no. of iteration. 

Hunting
Dingoes are unaware of the optimal prey location in 

their search area. However, alpha, beta, and other dingos 
know the potential location and can mimic hunting 
behavior. Alpha usually leads hunting, but beta or other 
dingos may also hunt. Two best values are considered to 
determine the optimal position for the prey. To do this, 
all dingoes must update their locations, which may be 
expressed mathematically as per the Eq. (49), Eq. (50), 
Eq. (51), Eq. (52), Eq. (53), Eq. (54).

   (49)

   (50)

   (51)

   (52)

   (53)

   (54)

To calculate intensity of every dingo, following as 
per the Eq. (55), Eq. (56), and Eq. (57) are being used,

   (55)

   (56)

   (57)

where, Ga and Gb = a and b-dingo fitness values, 
correspondingly, Gq = another dingo fitness worth.

Attacking Prey
Dingo completes hunt by attacking if no position 

update. Approach is mathematically constructed by 
lowering value of . The range  is decreased by ,  
variable  within an [-3a, 3a] interval is randomized, a 
value is decreased, when a variable has random values 
between [1, 1], the next position could be anywhere 
between current and preys.

Searching
Dingoes hunt according to the group’s position. The 

DOX uses random values, , to scan targets worldwide, 
indicating approaching or running prey. A value greater 
than 1 indicates approaching prey, while a value less 
than -1 indicates running prey.  also increases exploration 

Algorithm 2 pseudocode of Dingo Optimization Algorithm
Start DOA Input: The populace of dingoes Dn (i=1,2,..., n)
Output:  The best dingo. (This being the case for detraction 

issue)
1. Create primary search agents Din
2. Set value for ,  then 
3. While completion situation not achieved do
4.  Assess every dingo’s capability then concentration 

charge. 
5.  Ba = dingo over top search
6.  Bb = dingo over second-top search 
7.  Bq = dingoes finding outcomes subsequently
8. Iteration1
9. Repeat
10. For i=1: Dn do 
11. Restart modern quest agent status
12. End for 
13. Evaluate suitability then strength cost for dingoes
14. Record value for Ga, Gb and Gq

15. Record value of , , and 
16.  Iteration = Iteration+1
17. Check if Iteration >= stopping
18. Output End while
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possibilities. The vector  in Eq. (46) can generate any 
random number between [0, 3] for varied prey weights. 
The variable DOX is a probabilistic variable, where 
vector ≤ 1 comes before vector ≥ 1 for analyze impact of 
the gap as stated in Eq. (44).

ADOA
In ADOA, the mean of the acquired best solution from 

AOA and DOX is computed. This means the computed 
best solution is the global best solution.

Advantages:
●   The  best  solution  will  be  efficient  and  a  positive 

impact on defect detection.
●   The  best  solution  will  find  the  defect  fastly  and 

accurately.
●   It  enhances  workflow,  enabling  both  teams  and 

individuals to work more and provide better job 
outcomes.

The mean is for the utilization of the best solution in 
both algorithm

   (58)

Xbest, be the overall global best solution. best(wp) be the 
best solution (in terms of position) acquired from AOA. 
Bbest be the best solution (in terms of position) acquired 
from DOX. Mathematically, ADOA algorithm can be 
given as per Eq. (58).

DefectFuse Classifier
The selection feature next comes to the defectfuse 

classifiers. The defectfuse classifiers is the combination 
of CNN, Bi-LSTM, RNN, and Voting classifier. 

CNN
CNN are Strong deep learning models were developed 

particularly for applications related to computer vision 
and image processing. CNNs consist of pooling, 
fully connected, and complexity layers. These layers 
automatically extract layers of information from input 
images [33]. CNNs’ capacity to capture spatial hierarchies 
and patterns makes them useful for applications like item 
identification, facial recognition, and image classification. 
CNNs are ANNs (artificial neural networks) extended 
to feature extraction from matrix datasets with grid-like 
structures. Shared-parameter neural networks are called 
CNNs. Consider a representation of image as a cuboid 
whose length, width, and height are the RGB channels 
and image’s dimensions.

In a CNN model, the input x of every layer is arranged 
in three dimensions: height, width, and depth, or n×n×s, 
where n is similar as the width. Another name for the 
depth is the channel number. For instance, the depth (r) 
of an RGB picture is three. There are several kernels, 
or filters, denoted by l in each convolutional layer. 
Similar to the input image, they contain three dimensions 
(m×m×r); the only requirements are that m must be 
smaller than n and that q must either be equal to or 
smaller than s.

   (59)

Furthermore, the kernels serve as the foundation for 
the local connections, which, as was previously indicated, 
convolve with input and share identical characteristics 
(weight Ol and bias al) for producing l feature maps 
dl with a size of (n - m -  1) each f is the activation 
function applied element-wise v represents input data 
* represents the convolution operation. The inputs are 
small portions for original picture size, and convolution 
layer computes dot product among its input and weights 
as in Eq. (59).

Bi-LSTM
Bi-LSTM, is pattern model has two LSTM layers: one 

to process inputs in the direction of progress and another 
for handling in the reverse direction. It is typically 
applied to jobs using NLP. The idea behind this strategy 
is that the model can better comprehend the link between 
sequences by processing input in both directions.

The gradient of a recurrent neural network can quickly 
inflate also vanish in the gradient method when the time 
steps are excessively little or big. Consequently, LSTM 
utilizes a gating mechanism to regulate information to 
tackle this difficulty. The hidden state among earlier time 
step Du-1 and the present time step input Vu is the input 
of an LSTM gate. The entire connecting layer calculates 
the output as per the Eq. (60), Eq. (61), Eq. (62), Eq. 
(63), Eq. (64).

   (60)

   (61) 

   (62)

    (63)

   (64)

d signifies the number of secret units, Vu means the tiny 
batch input over the time step p, Du-1 denotes the secret 
state for preceding time step, s represents the sigmoid 
function, Ovp and Odp denote the weight matrix for gate 
used for input, also ap is the input gate’s offset term. Ovg 
and Odg represent weight matrices for forgetting gate, 
and ag is forgetting gate’s offset term.  As potential 
memory cells, Eu represents the current cell state, Eu-1 
represents the prior cell state, Ove and Ode are weight 
matrices of gated unit, and ae is offset term for gated 
unit. Ovq and Odq are weight matrix for output gate, then 
aq is the offset term for output gate. The concealed state’s 
information flow is regulated by multiplication by 
elements .

Data flow from memory cell to hidden state is 
regulated by output gate Qu, and the resultant output Du 
as per the Eq. (65).

   (65)

The Bi-LSTM technique uses both forward and reverse 
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LSTM to extract features from data, considering all 
hidden details. This method can improve the results by 
merging two-way extraction results from two dimensions 
in a specific method, reducing the data provided by single 
LSTM and resulting in more comprehensive results.

RNN
An artificial neural network class called RNN is 

made for processing data sequentially. Because of 
their special design, they may be used for tasks like 
time series prediction, voice recognition, and language 
modeling, and they can retain hidden states that reflect 
temporal relationships. RNNs preserve the recollection 
of previously processed data as they step-by-step process 
incoming sequences. However, the problem of vanishing 
gradients is the reason behind its incapacity to express 
long-term dependency. 

The Gated Recurrent Unit (GRU) is popular RNN 
unit that can capture relationships over various time 
scales adaptively. It features gating units that influence 
stream of detail, similar to LSTM units. However, GRU 
exposes the entire state every time and lacks regulation 
mechanism. Due to the disparity in length between 
questions and answers in AS, it is more suitable. To learn 
sentence representations, the hidden state du is calculated 
as per the Eq. (66), Eq. (67), Eq. (68), Eq. (69).

   (66)

   (67)

   (68)

   (69)

where O, Oy, Os; C, Cy, Cs and a, ay, as are network 
parameters.

Voting Classifiers
Voting classifiers in deep learning are used to detect 

defects by integrating the outputs of several different 
models to determine whether or not a flaw exists. This 
ensemble approach improves accuracy and resilience by 
using many models [34]. Voting classifiers are essential 
to obtaining high accuracy and resilient performance 
in defect detection applications because they use the 
advantages of many deep learning architectures to make 
collective choices regarding the existence of faults in a 
variety of materials or surfaces.

Result and Discussion

In this subdivision result and discussion of the 
suggested model is presented.

Experimental setup 
The proposed model has applied Python. 70% of 

collected data has been used for training and 30% for 
testing. A comparative analysis has been made with state-
of-the-art methods. The assessment considered several 
metrics like sensitivity, specificity, accuracy, precision, 
FPR, FNR, NPV, F-Measure and MCC.

Overall performance analysis for deep learning 
models

For Training Rate=70%
Table 1 shows the results acquired with the proposed 

as well as existing classifiers for 70%. The accuracy 
recorded by the proposed model (defectfuse classifier) 
is 97.4%, which is better than CNN=96.8%, Bi-LSTM 
=93.3%, RNN=95.6%, DCNN=93.4% due to the 
proposed model is the combination of CNN, Bi-LSTM, 
RNN. The precision is recorded by the proposed model 
is 88.5% which is better than CNN, Bi-LSTM, RNN, 
DCNN due to the involvement for ADOA. In addition, 
the planned model has recorded the highest sensitivity 
(88.5%) and specificity (98.5%) which is better than 
CNN, Bi-LSTM, RNN, DCNN because of the proposed 
model of feature selection process. The f_measure 
recorded by the proposed model is 88.5% which is 
better than remaining model due to the performance for 
combination of proposed model. The model recorded 
the high MCC of 87% than other models due to the 
performance of ADOA. The proposed model achives 
high NPV of 98.5% than other models for finding the 
Negative value. The model achives less FPR 1.4% and 
FNR 11.4% of proposed false positive and negative rate 
due to the involvement of deep learning technique.

For Training Rate=80%
Table 2 shows the results acquired with proposed 

as well as existing classifiers for 80%. The defectfuse 
classifier, a suggested model, outperforms other models 
with a 99% accuracy, outperforming CNN (97.1%), Bi-
lstm (95.1%), RNN (96.4%), and DCNN (94.3%). The 
reason for this advantage is that the suggested model 
integrates RNN, CNN, and Bi_LSTM. In addition, 
the suggested model’s precision of 95.7% beats CNN, 

Table 1. Overall performance analysis for proposed Vs existing classifiers: for training rate=70%.
Accuracy Precision Sensitivity Specificity F_Measure MCC NPV FPR FNR

CNN 0.968322 0.857447 0.857447 0.982181 0.857447 0.839628 0.982181 0.017819 0.142553
Bi-LSTM 0.933333 0.7 0.7 0.9625 0.7 0.6625 0.9625 0.0375 0.3

RNN 0.956974 0.806383 0.806383 0.975798 0.806383 0.782181 0.975798 0.024202 0.193617
DCNN 0.934279 0.704255 0.704255 0.963032 0.704255 0.667287 0.963032 0.036968 0.295745

PROPOSED 0.974468 0.885106 0.885106 0.985638 0.885106 0.870745 0.985638 0.014362 0.114894
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Bi-LSTM, RNN, and DCNN since it makes use of 
a hybrid optimization technique. Furthermore, when 
contrasted to CNN, Bi-LSTM, RNN, and DCNN, the 
model that was suggested has the greatest sensitivity 
(95.7%) then specificity (99.4%). This benefit is ascribed 
to the property selection procedure that the proposed 
framework uses. The hybrid optimization approach 
allows the suggested model to outperform alternatives, 
resulting in a high MCC score of 95.2%. When it comes 
to recognizing negative values, the model recommended 
outperforms other models with a high NPV of 99.4%. 
The recommended model uses deep learning techniques, 
which lowers the FPR to 0.5% and the FNR to 4.2%. 

So, it is best approach for ceramic tile surface defect 
detection.

The superiority of the proposed defectfuse classifier 
over existing methods lies in its innovative design and 
its ability to address key challenges inherent in ceramic 
tile surface defect detection. Here’s a breakdown of the 
justification based on the results:
●   Integration  of  Deep  Learning  Architectures:  By 

combining CNN, Bi-LSTM, and RNN architectures, 
the proposed model harnesses the complementary 
strengths of these networks. CNNs excel at spatial 
feature extraction, Bi-LSTMs handle sequential 
data effectively, and RNNs capture temporal 

Table 2. Overall performance analysis for proposed Vs existing classifiers: for training rate=80%.
Accuracy Precision Sensitivity Specificity F_measure MCC NPV FPR FNR

CNN 0.971158 0.870213 0.870213 0.983777 0.870213 0.853989 0.983777 0.016223 0.129787
Bi-LSTM 0.9513 0.780851 0.780851 0.972606 0.780851 0.753457 0.972606 0.027394 0.219149

RNN 0.964539 0.840426 0.840426 0.980053 0.840426 0.820479 0.980053 0.019947 0.159574
DCNN 0.943262 0.744681 0.744681 0.968085 0.744681 0.712766 0.968085 0.031915 0.255319

PROPOSED 0.990544 0.957447 0.957447 0.994681 0.957447 0.952128 0.994681 0.005319 0.042553

Fig. 7. Classifier performance Analysis for (a) accuracy, (b) F_measure, (c) FNR, (d) FPR, (e) MCC, (f) NPV, (g) Precision, (h) 
Sensitivity, (i) Specificity.
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dependencies. This integration allows the model to 
capture intricate patterns and variations in ceramic 
tile images more comprehensively than single-
network approaches.

●   Hybrid Optimization for Feature Selection: The hybrid 
optimization approach, which combines arithmetic 
optimization algorithms and dingo optimization, 
ensures that the most relevant features are selected 
for defect detection. This optimization strategy 
enhances the model’s ability to discriminate between 
defective and non-defective tiles by focusing on the 
most informative features while minimizing the risk 
of overfitting.

●   Superior  Performance  Metrics:  The  experimental 
results demonstrate that the proposed defectfuse 
classifier consistently outperforms existing classifiers 
across various performance metrics, including 
accuracy, precision, sensitivity, specificity, MCC, 
and NPV. These metrics serve as objective measures 
of the model’s effectiveness in accurately identifying 
defects while minimizing false positives and false 
negatives.

●   Reduced Error Rates: Compared to existing classifiers, 
the proposed model exhibits lower false positive 
and false negative rates (FPR and FNR), indicating 
its ability to minimize both type I and type II errors. 
This reduction in error rates is crucial for ensuring 
that defective tiles are accurately identified and 
appropriate actions are taken to maintain product 
quality.

●   Comprehensive  Validation:  The  validation  of  the 
defectfuse classifier using a robust experimental 
setup, including training and testing on separate 
datasets, enhances the reliability and reproducibility 
of the results. The model’s consistent performance 
across different training rates further validates its 
effectiveness across varying data scenarios.

In summary, the proposed defectfuse classifier offers a 
holistic solution to the challenges of ceramic tile surface 
defect detection by leveraging advanced deep learning 
architectures and innovative optimization techniques. Its 
superior performance metrics, coupled with reduced error 
rates and comprehensive validation, justify its superiority 
over existing methods in enhancing quality control 
processes in the ceramic tile manufacturing industry.

Conclusion

This research work has introduced a new deep learning 
approach for ceramic tile surface defect detection. 
(a) Data Acquisition (b) Pre-processing (c) Feature 
Extraction (d) Feature selection (e) Deep-learning based 
defect detection. Firstly, defect detection was conducted 
using images from the raw images of the sample. The 
collected images were pre-processed through median 
filtering and image augmentation. The processed images 
were endowed with features like HOG, LBP, Color 

Histograms, Gabor Filters, and Edge Detector. Among 
these features, the optimal features were determined 
using the new ADOA (combined arithmetic optimization 
algorithms and dingo optimization). Subsequently, the 
defect was detected with the proposed model using a new 
Defectfuse classifier model. The proposed Defectfuse 
classifier model comprised deep learning classifications 
such as CNN, Bi-LSTM, and RNN, respectively. Finally, 
the results for voting classifiers were validated. Python 
was used to performed in the system.
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