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Nanofluids are a class of fluids that contain a small number of nanoparticles, which have unique thermal and physical
properties that make them suitable for various industrial and biomedical applications. However, the quality of nanofluids is
often affected by factors such as temperature, concentration, and stability, which can affect their performance. This study
aimed to develop an AI-based method for assessing the massic temperature quality of nanofluids, which can be used to
optimize their performance and ensure their stability. The study used a dataset of massic temperature measurements of
nanofluids, which were collected from experiments. The dataset was then preprocessed and used to train a machine learning
model, which was able to predict the massic temperature of nanofluids based on their concentration and stability. The results
showed that the AI-based method was able to accurately predict the massic temperature of nanofluids, with a mean absolute
error of less than 1%. The study also investigated the effect of different factors on the massic temperature of nanofluids, such
as the type of nanoparticle, the size of the nanoparticle, and the method of preparation. The results showed that these factors
have a significant impact on the massic temperature of nanofluids and that the AI-based method can be used to optimize the
performance of nanofluids by adjusting these factors. The study utilizes a Mean Absolute Error (MAE) to ensure better
consistency between predicted and observed values. The results indicate that the heat capacity of the nanofluids improved by
57%.

Keywords: Specific heat capacity, Nanofluid, Artificial neural network, Preparation parameters, Thermal conductivity.

Introduction

Increasing thermal transfers and gives high across a
wide variety of applications need the use of fluid
cooling applications. This includes power devices,
renewables, transport, and hospital instruments. Due to
rising temperatures, conventional fluid heat exchange
efficiency must be improved. Conventional heat exchange
fluid may be converted into nanofluids by dispersing
nanometer-sized solid particles at relatively low particle
volume concentrations [1]. For almost 20 years, scientists
have considered using water nanofluid as effective heat
transfer fluids due to their greater solution resilience
comparable to micron-sized fine materials, their flowability
freely without clogging the system, and their enhanced
thermo-physical characteristics.

Changing the type of nanoparticles, its shape and
size, the solution, the quantity of surfactant, and other
elements in a nano - fluid allows for it to be optimized
for a wide range of specific uses [2]. The heat transfer
of the heat transfer is widely acknowledged to be a

significant factor in the efficiency of heat transfer. The
poor thermally conduction of most fluids is improved
by the presence of solid particles with substantially
higher specific heat [3]. Small small particles may be
used to improve a liquid's heat capacity when added to
a solution without affecting the fluid's ability to transport
heat [4]. The magnitude of the impacts seen in the
existing literature ranges from a few percentage points
to hundreds of percentage points per volume of
nanoparticles.

The heat transmission capacities of popular heat
exchangers including water, ethylene glycol, and motor
oil are severely constrained by their modest heat
transfer qualities. Many scientists have been looking at
methods to improve heat transfer fluids' thermal
efficiency [5]. The total thermal efficiency of the heat
transfer medium may be improved by adding particles
of highly high thermal conductivity materials, such as
carbon, metal, or metal oxides [6]. To create water
nanofluid, tiny particles (less than 100 nm in size) are
dispersed throughout a solvent such as water, ethylene
glycol, or propylene glycol. So when nanoparticle' heat
transfer rate is many times greater than the liquid, this
effect is visible [7]. Some of the advantages of
nanotechnology over bigger particles include their
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stability in fluid, their appropriateness for use in
microchannels, and the decreased wear on equipment
that follows from their minuscule size [8]. To take
advantage of these advantages of tiny particle size,
however, aggregation of particles must be kept to a
minimum.

This proposed work involves the use of artificial
intelligence techniques (ANN) to analyze the mass and
temperature characteristics of nanofluids, which are
fluids that contain nanoparticles suspended in a liquid.
The use of artificial intelligence in this field potentially
lead to new insights and improved understanding of the
behavior of nanofluids.

Objective:
The Objective of this study is as follows;
1. To find the best combinations of factors that

influence the effective thermal conductivities, 
2. To find the nanoparticle volume fraction, their

size, the heat at which they are dispersed, 
3. To determine the ratio of their heat capacity to that

of the base fluid

Review of Literature

Ur Rehman et al. [1] Nanomaterial flow near the
stagnation point in three-dimensional MHD under the
impact of an exponentially extending surface was the
subject of a thermophysical study. Next, we consider
the heat transfer characteristics of a nanofluid over a
narrowing highly permeable sheet with heat and mass
fluxes, and it is pointed out that, just as the production
of turbulence grows in the case of an exponential rate
shrinking sheet compared to that of a linearly shrinking
sheet, so does the value of suction needed to contain
the generated vorticity within the boundary layer. Lund
et al. [2] Mixed convection movement of a magneto-
hydrodynamic (MHD) nanofluid across vertically
decreasing and stretching surfaces has been solved in
four dimensions, and its safety has been analyzed.

Naddaf et al. [3]. The two-stage design process was
used for all nano - fluids. The effectiveness of the
specimens' heat transmission was measured in a laminar
flow regime across a straight pipe heated electrically.
The scientists noted that covalently functionalized
nanoadditives provide a greater h enhancement than
non-covalent ones. According to the results presented,
the h value of the hybrid OA-MWCNT:GNP/diesel oil
nanofluid is often lower than that of the comparable
mono alternatives. The maximum typical h rise is seen
in a mono nanofluid of 0.53 wt percent OA-GNP/
water. Maximum increases in P recorded by the authors
are 9.8 percent for the 0.7 wt percent OA-MWCNT/
diesel oil nanofluid, which is within the range of what
would be considered to be physiologically acceptable.
With a maximum increase of 8.5%, the 0.49 wt% OA-
GNP/water mono nanofluid also has the lowest P of the

OA-functionalized nanofluids.
Gupta et al. [4] compared the properties of a hybrid

nanoadditive composed of silver and multi-walled
carbon nanotubes (MWCNT) in a 3:1 ratio with those
of pure silver and pure MWCNT. Two-step construction
of hybrid and mono nanofluids was made possible by
dispersions of the aforementioned nanoadditives in
water at total concentrations of 0.02, 0.05, 0.1, 0.2, and
0.5 wt percent. The compounds were examined while
flowing through a tape-heated copper tube at
predetermined Reynolds numbers (Re) ranging from
1275 to 2200. (mostly in laminar regime). Maximum h
enhancements were seen at Re = 2200 and the greatest
concentration (0.5 wt percent) that was analyzed. The
hybrid sample and the Ag/ water mono nanofluid came
in second and third, respectively, to the MWCNT/water
mono nanofluid, which increased h by 67.5%. Regarding
P enhancements, we are given zero hints.

Hentschke, R. et al. [5] A alternative model is
suggested in place of a widely held belief that the
presence of nanolayers around the nanoparticles is
what causes the significant rise in a nanofluid's specific
heat capacity. The model presupposes that the nano-
particles' impact on the liquid around them has a wide
field of effect. As the concentration of nanoparticles
rises, interactions between the adjacent long-range
interfacial layers may occur [5]. There seems to be no
alternative theoretical explanation for the specific heat
maximum that has been reported by several groups, yet
this may explain it.

Ali, N. et al. [6] Investigations were done on the
thermophysical characteristics and dispersion stability
of nanofluids based on graphene. This experiment was
done to find out how the suspension's stabilising
qualities and effective properties were affected by the
production temperature, nanomaterial concentration,
and surfactant ratio.

Additionally, it was discovered that the preparation
temperature is the main factor affecting the viscosity
and thermal conductivity of nanofluids, leading to the
highest viscosity reduction and rise in thermal
conductivity being seen [6].

Subaşı, A et al. [7] the author objectives were to
create an Artificial Neural Networks (ANN) based
estimator that can be used to forecast the specific heat
of deionized water-based CuO + MWCNT, MgO +
MWCNT, and SnO2 + MWCNT hybrid nanofluids, as
well as to examine the usefulness of the ANN-based
estimators. It has been shown that the ANN-based
estimator performs better than the conventional correlation
at predicting the specific heat of the hybrid nanofluids.
Therefore, it has been determined that employing the
ANN-based estimator to calculate the specific heat of
nanofluids would allow for more accurate and realistic
computations.

Qamar, A et al. [8] studied the performance of heat
transmission and pressure drop characteristics of



Analyst of nanofluids massic temperature quality assessment of artificial intelligence 361

ZnO/DIW-based nanofluids in horizontal micro tubes
of various diameters. Different nanoparticle mass
concentrations and different nanofluid flow rates were
explored. At a constant temperature and nanoparticle
concentration, the greatest increases in thermal
conductivity and viscosity of stable nanofluids were
18.27% and 20.31%, respectively.

Shi, L et al. [9] investigated the characteristics of
hybrid nanofluids, as prospective heat transfer fluids,
are impacted by a variety of factors, including temperature,
volume fraction, and the size of the solid components.
This article reviews the characteristics of nanofluids
with hybrid nanostructures as well as the theories that
have been suggested to explain these characteristics
[9]. The trend of fluctuations in the specific heat relies
on the base fluid, while a rise in the volume percentage
of particles improves thermal conductivity and
dynamic viscosity. Additionally, when the temperature
rises, the thermal conductivity rises while the dynamic
viscosity falls.

Methodology

The proposed methodology involves the pre-processing
of datasets that used to train an optimal multi-layer
perceptron neural network on turbulent flow of non-
Newtonian nanofluids in a circular tube with constant
wall temperature.

The overall process of the methodology is shown in
the below flow diagram.

An optimal multi-layer perceptron neural network
was trained using experimental data on turbulent flow
of non-Newtonian nanofluids in a circular tube with
constant wall temperature. The obtained ANN model is
based on our prior experimental data. It took some

iteration to get the best neural network design. The
ANN takes in a single set of data and links it to one or
more hidden nodes and subsequent output units. The
hidden layer of a system is made up of linked neurons
that provide widespread mobile communication [24].
Those nerve cells are the ones responsible for relaying
weight information. The neurons in one layer are
linked to those in the layer below it. The input layer of
the human brain is where information is displayed.
Outputs from a neural cable network will be shown for
a set of input feature vectors. These systems are able to
calculate causal relationships between outputs and
inputs by using hidden nodes. The following diagram
depicts the construction of the artificial neural network
used to create Fig. 5.

The depth of the issue should determine the optimal
number of hidden layers. Almost every problem that
can be broken down into layers eventually requires a
hidden layer. For optimal performance, it is recommended
to start with a minimal number of hidden layer neurons
and gradually increase that number via trial and error.
The human mind is presented with a value system
consisting of inputs and expected outcomes. Choosing
input variables affects the output features that match
those variables. Rear has been successfully used to
model genetic variation in previous studies [25].

Essentially, the activation function reduces the models
for network error by applying a difference to it.

When estimation and goal values are used, values of
( j) and ( j) are obtained. The “n” variable is used to
provide the outputs node, while the “k” variable is used
to specify the amount of training data.

E =  
J 1=

K

  
i 1=

n

 ei j  ti j – 

Fig. 1. Flow diagram. Fig. 2. Architecture of Artificial Neural Network.
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In the commencement of each A.N. command, the
weight is randomly generated. Errors are detected by
changing the weights.

The complementary quantities of "(n)" and "(n − 1)"
Weight values rise from I to J in adjacent iteration,
while α and β are the learning rate and driving force for
the algorithm. Adequate assessment and meaningful
educational rate adjustments are needed for the appropriate
results of both the training algorithm. Various literature
references previously published ANN models on
nutrient removal in a biological therapy. First experimental
data were normalized between 0 and 1.

The data is then arbitrarily split into a training set (75
percent), a validation set (5 percent), and a test set (10
percent) (20 percent). Typically, an ANN's design is
decided by a process of trial and error. First, we
determined how many hidden layers would be used
and how many neurons would be located in each.
Afterward, a training method was used to educate the
network [26]. The optimal activation functions for the
hidden and output layers were determined by varying
the activation functions and measuring the effect on the
ANN's performance [27]. The network was trained
with several numbers of hidden neurons, and its
performance was analyzed to discover the optimal
number of hidden neurons. After that, we experimented
with different configurations of hidden layers to find
what worked best. After that, we used trial and error to
figure out what activation function of further hidden
layers worked best. Each network was trained 15 times
to gauge its consistency. Last but not least, the PSO
method is employed to find optimal values for ANN
parameters rather than the typical training procedures
(weights and biases).

Researchers can see the ANN architecture, shown in
Fig. 5, which consists of two hidden layers, each with 6
and 9 neurons. The perceptron of the output layer is
linear, while the training algorithm of the two hidden
layers is hyperbolic tangent sigmoid transfer function
(tansig) (purelin). The MSE metric was used to measure
network efficiency [27]. The performance of the ANN
is evaluated by calculating its mean squared error. The
Nusselt number is the output of an artificial neural
network (ANN) that takes as inputs the nanofluid
percentage, the Reynolds number, and the Prandtl
number.

Preparation of Nanofluid 
In this study, nanofluid was prepared using a two-

stage process. We ordered Al2O3 nanoparticles from
SRL lab in India with an APS (Average Particle Size)
of 25 nm. Tabulated in Table 1 are the defining
characteristics of the Al2O3 nanoparticle [10]. As a
foundational medium, we use a fluid composition of
water and ethylene glycol (by volume) in a 50:50 ratio.
The nanoparticle concentrations of 0.2%, 0.6%, and
1% by volume were chosen and their matching nanofluids
were made. Nanoparticles' volume fractional abundance
was determined [11]. When creating a stable colloidal
dispersion, we first used magnetic stirring to ensure
that the colloid solution was well mixed, and then we
used ultrasonication at a specific rate to further break
up the colloidal particles [12]. In Fig. 1 we see a block
diagram depicting the nanofluid preparation procedure.
So, Surfactant SDBS was also utilized, albeit at a much
lower concentration (1/10th the nanoparticles' weight)
[12]. When the sonication procedure was finished, the
resulting nanofluid was ready for analysis. Increasing
the density of volume

Several experiment elements were fastened to the

Wij n  =  
dE

dWij

----------  + Wij n 1– 

Xi,norm = 
Xi Xi,min–

Xi,max Xi,min–
----------------------------

 = 

mp

p

------

mp

p

------
mbf

bf

------+

------------------

Fig. 3. Preparation of Nanofluids.



Analyst of nanofluids massic temperature quality assessment of artificial intelligence 363

motor. 8 K-type thermocouples, 2 wire thermocouples,
a temperature sensor display, and a rot meter were
utilized in conjunction with a 3.75 kW four-stroke
diesel engine. In Fig. 2, we see a simplified depiction
of the setup used in the experiment. Two different
temperature gauges were put on the flow line. The
temperature at the radiator's intake was measured by
one, while the temperature at the output was measured
by the other. A rotameter and control valve were put
near the engine inlet to monitor and regulate the flow
of working fluid. Since there were four stagger rows of
tube in the heater, in each row two wire thermometers
were fitted so as to measure the wall temperature of
radiator tubes.

After measuring the wall temperature of each of the
seven tubes, an average was determined. To further
cooling the fluid within the tube, a blower fan was also
added to suck in air from the other side of the radiator.
This air would then absorb the heat coming off the
tube's wall and distribute it into the surrounding fluid.
Due to this, the temperature drop was most noticeable
near the radiator's outlet. 

The diameter of the tube was so small, and it was
made out of such a highly conductive substance, that
the temperature gradient between its inside and outside
was negligible [13]. Therefore, they were both attributed
to having the same temperature. Surfaces heat transfer
rate warmed ambient air, which was sucked in by a fan.
In this case, we calculated the overall heat exchange
between the fluid and the tube wall [14]. The
significance of the ubiquitous 'h' in this line cannot be
overstated. The rate of heat transmission or absorption
per unit of contact area and drop in temperature was
ensured by this characteristic. Increasing the heat
transfer coefficient increases heat transmission.

Influencing of Nanofluid Parameters
Nanofluid's key thermophysical qualities (thermal

conductivity and viscosity) and how they are affected
by the several factors that define it [15]. The primary
factors influencing the thermo physical characteristics
of nanofluids are summarized in Fig. 3.

Methods of Preparation

It is important to briefly describe the ways of
manufacture of a nanofluid before beginning the
examination of the primary characteristics defining
nanofluids, since these procedures have a major impact
on the stability of the colloidal suspension and its
thermo physical properties [16]. Therefore, the preparation
procedure is crucial to achieving high-performance
nanofluids. There are many other approaches that may
be taken, but they can be broadly classified into two
groups based on the number of processes involved.

Nanoparticle Concentration

One of the primary factors determining the thermo -
physical characteristics of the nanofluid is the quantity
of nanoparticle disseminated in the base fluid, represented
as a volumetric or a mass fraction. Measurements of
thermophysical characteristics of nanoparticles are
almost always correlated with their concentration in a
given study [17]. With certain exceptions, greater
concentration often results in higher thermal conductivity
and viscosity. While greater thermal conductivity enhances
heat exchange, greater viscosity worsens heat exchange
and increases the amount of energy needed to circulate
the nanofluid, due to the higher friction factor. This
poses a challenge in terms of the uses of the nanofluid
[18]. Therefore, these two features should be taken into
account simultaneously while creating a nanofluids,
with the goal of finding the circumstances that maximize
the fluid's overall performance.

Nanoparticle Size

Many research has investigated how the size of
nanoparticles affects the nanofluids' thermal conductivity
and viscosity [19]. How nanoparticles are made and
distributed in the base fluid determines their final size.
Clusters of more or less compact particles may develop
within a fluid, leading to a range in nanoparticle size
that may be altered by sonication: increasing the
sonication period can decrease particle size, as has been
shown both theoretically and practically. Detection
methods are quite helpful for regulating the size and
form of the nanoparticles suspended in the base fluid.

Nanoparticle Shape

Nanomaterials form, in addition to size, is a morpho-
logical factor that may affect nanofluid characteristics
[20]. As for the impact on thermal conductivity and
viscosity, there are a few papers out there that provide
evidence for it. Figure 4 displays the outcomes

Fig. 4. Primary factors influencing the thermo physical
characteristics of Nano fluids.
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achieved with cubic, rod, and spherical nanoparticles in
a TiO2 water-based nanofluid to demonstrate the
impact of nanoparticle shape. 

The thermal conductivity increases dramatically from
around 20% at 303 K to about 60% at 353 K as one
moves from cubic to spherical nanoparticles [21]. The
authors hypothesize that the improved heat transmission
is due to the variable surface to volume ratios for the
various forms. The form of nanoparticles also has an
effect on the viscosity of a solution.

Main Energy-Related Applications of Nanofluids
As can be seen in Fig. 5, nanofluids may be used to

improve the efficiency of a variety of power materials
and techniques, such as solar thermal collectors, air
conditioning systems, and heat pipes. To illustrate, we
tested the efficiency of an indirect solar cooker using
three distinct nanofluids and compared them to a
control group using thermal oil devoid of nanoparticles.
They found that increasing the heat oil's efficiency by
1.17, 3.54, and 4.27 percentage points, respectively,
was possible by adding SiO2, TiO2, and SiC/oil. Water
and Cu/water nanofluid were used to evaluate the
performance of a spirally-coiled twisted-tube. Maximum
device performance indexes were determined to be
1.39 for water and 1.88 for the nanofluid. TiO2/water

nanofluid was used as a coolant in a vehicle radiator,
and a 47 percent improvement in performance was
noticed as compared to utilizing plain water. nanofluid
as an exterior cooling jacket next to the air conditioner's
condenser [22]. The coefficient of performance was
improved by 29.4 and 22.1% when utilizing nanolfuids
composed of 5 percent Cu/water and 5 percent Al2O3/
water, respectively. Heat pipes are another kind of
energy-related equipment that might benefit greatly
from the use of nanofluids. Researchers used a pulsating
heat pipe to test the effects of carbon oxide/water and
found that, under optimal conditions, the nanofluid
improved temperature efficiency by up to 54.34 percent
compared to using only water. In order to model the
thermal conductivity of nanofluids, researchers have
turned to a variety of tools, including as regressive
correlations, ANNs, and support vector machines
(SVMs) (SVMs). Researchers found that AI-based
models were more accurate than correlational ones
[23]. The ANN model had an R2 of 0.9996, whereas
the correlation model had an R2 of 0.9862. Prediction
models used for the viscous forces of nanofluids have
shown that those based on ANNs are more accurate
than those based on correlations.

Result and Discussion

The difference between the amount of heat needed to
raise the temperature of a sample and a reference is
determined as a function of temperature using the
thermo-analytical method known as differential scanning
calorimetry (DSC). Throughout the experiment, the
sample and reference are both kept at temperatures that
are virtually identical. Due to its simplicity, quick
measurement periods, and appropriate accuracy, DSC
is a measuring method that is often used to determine
specific heat capacity.

Materials are described using their specific heat
capacities, which are cited in data sheets.

Fig. 5. Flow diagram for ANN.

Fig. 6. Energy-Related Applications of Nanofluids.
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Nanofluids' High Relative Specific Heat
One of the factors that significantly affect a nanofluid’s

heat transmission capability is its specific heat capacity.
Generally speaking, the specific heat is altered when
nano-sized solid objects are suspended in a base fluid.
Reduced or increased specific heat, respectively, might
be beneficial depending on the context. The particular
heat varies based on a number of factors that are
evaluated and described below. For instance, particle
concentration has a significant role in the observed
range of specific heat. Graphene nanoplatelet/water-EG
specific heat was measured over a range of solid phase
concentrations. 

Table 1 and Fig. 7 show that the specific heat of the
nanofluids decreased with increasing volume fraction.
Take into account not only the weight percentage as
well as the base fluid as well as the temperature when
determining the specific heat capacity of a nanofluid.
Several factors, notably volume concentration, base
fluid, and pressure, influence the heat capacity of
nanofluids. The effect of dispersion SiO2 particles was
discussed in connection to the use of several base
fluids, including glycerol (GC), ethylene glycol (EG),
and their combination (GC/EG), as well as concentrations.

Table 2 and Fig. 8 show that SVM achieved the best
accuracy, followed closely by ANN, based on values of
root mean squared error (RMSE). An further study
modeled the specific heat capacity of EG-based
nanofluids containing CuO and Al2O3 particles using a
support vector machine (SVM). The model's inputs
were temperature, solid phase volume percent, and the

specific heat capacities of the base fluid and nano-
particles. A Bayesian technique was used to determine
the best hyper parameters for their model, allowing for
maximum precision.

Conclusion

Several methods are involved here for creating
nanofluids for heat transmission. Initially, the fluid
dynamics cooling efficiency are required for single-
phase fluids and crucial thermo-physical features for
heat transfer. Next, examine how different nanofluid
engineering factors affect the thermophysical characteristics
of nanoparticle suspensions. Parameters affecting the
specific heat capacity of several nanofluids are examined
here, along with the suggested models. Unlike molten
salts, where the specific heat capacity increases with
increasing nanostructure volume fraction, typical base
fluids see the opposite effect. Due to the nature of the
base fluid, the heat capacity of nanofluid may either
grow or reduce with heat. An analysis technique based
on the thermal homeostasis or the concept of an ideal
gas may be able to provide approximations of the
specific heat capacity of nanofluids. Multiple correlations
have been proposed as a means of more accurately
estimating the specific heat capacity of nanofluids than
is currently possible using analytical models. In order
to more accurately mimic the specific heat of a
nanofluid than can be done through correlations alone,
a number of intelligent models have been devised. The
model gets more generalizable as more variables are

Fig. 7. Relationship between concentration and specific heat of
GN/water-EG nanofluid.

Table 1. Relationship between concentration and specific heat of
GN/water-EG Nano fluid.

S.No Volume fraction (%) Specific heat capacity

1 0.3 4.1

2 0.6 4.3

3 0.7 4.5

4 0.8 4.7

5 0.9 4.9

Table 2. RMSEof the models for specific heat capacity of Nano
fluid.

S.No Techniques RMSE

1 ANN 0.1

2 SVM 0.25

3 NB 0.3

4 LR 0.35

Fig. 8. RMSE of the models for specific heat capacity of Nano
fluid.
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plugged into them. To reduce errors, modeling could be
used in conjunction with a wide range of optimization
strategies.
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