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Ceramic tiles are in high demand in the infrastructure and building development industries due to their low cost, ease of
installation, maintenance, moisture resistance, and availability in a broad range of colors, textures, and sizes. Automated
facilities, which produce hundreds of tiles in every segment, require a tremendous volume of output. Because of the large
number of tiles produced and the frequency with which they are produced, it is impossible to manually examine them for
faults, necessitating the use of a rapid, efficient, and reliable automated process. However, while the process of detecting flaws
and categorizing them (or classification) is not as efficient as it might be, recent advances in computing technology,
mathematical modeling, and high-resolution picture capture equipment have given rise to new prospects in the subject. Many
kinds of literature on using these systems for the same goal are currently accessible. Deep learning is a type of artificial
intelligence that helps people makes decisions. In production applications, image detection of faulty Ceramic Tile Surfaces is
a critical skill. Deep learning is now being studied for its potential application in automated defect identification. As a result,
we propose Deep Learning approaches that take advantage of the transform domain properties of the tiles image. The model's
capacity to learn via the system makes it versatile and dynamically customizable. Different deep learning-based fault detection
and classification transfer learning approaches are examined in this study.
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Introduction

In manufacturing applications, defect detection is a
vital capability to ensure quality. For a production
process to be in control and run according to schedule,
defect identification is essential. Based on the type and
quantity of results, corrective measures can be made to
make sure that process performance remains appropriate.
These obligations might include everything from changing
out a machine tool to doing routine maintenance on
other parts. Defect identification may be viewed as
occurring before the machine maintenance diagnostics
phase. Defect identification is a crucial part of the
inspection process since it decides whether a product
generated by a process or provided by a supplier
should be approved or rejected. It can also aid in the
rework and repair of parts, reducing material waste. If
errors are recognized early enough in some industrial
processes, a feedback control system can be engaged.
Defect identification processes are also necessary for
developing process models that may be used to

improve product quality. Previously, flaw detection was
done by humans who had prior knowledge of the
procedure. Automated defect detection is required to
enable increased levels of automation in manufacturing
operations. 

One of the most common methods for detecting
faults is to process and analyze photographs of surfaces
containing problems. Automated surface defect
identification has been the subject of several articles
that combine traditional image processing methods
with machine learning. When the defect patterns on the
surfaces are continuous and the background is different
from the defect, traditional image processing techniques
can produce the expected results. In such circumstances,
methods including edge detection, greyscale image
threshold, and picture segmentation are frequently
employed to enhance fault finding.

Types of Ceramic Tile Defects
• Cracked Tiles

The major reasons for cracked tiles include heavy
objects like pots and cans being dumped on the tiles,
the use of inferior tiles, an inappropriate subfloor,
improper cutting and handling, changes in the
atmosphere, etc.
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• Faded Tiles
Due to sunlight exposure or the use of unnecessarily
harsh chemicals, tiles lose their sheen.

• Shade Variation in Tiles (Spot)
Shades of tile are the result of combining the tile's
color and the way that color or ornamentation is
distributed over the surface with other visual aspects
of the tile.

• Chipped Tiles
Unintentionally, a large item falls upon the tile.

• Crazing on Tiles
The glazed surface of tiles develops hairline fractures.

• Warped Tiles
Heat has the effect of bending, twisting, or deforming
tiles.

• Size Variation in Tiles

Fig. 1. Sample of Ceramic Crack Images.

Fig. 2. Sample of Ceramic Spot Images.
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During manufacture, tiles shrink, and the amount of
shrinkage varies from tile to tile, etc. 
Model-based approaches are effective for images

with little to no change in the flaws they detect.
Because there are numerous forms of uncertainty in
industrial settings, ranging from the severity of flaws to
their shapes and sizes, it is vital to build procedures
that can adjust to such extensive differences. Because
of their tolerance to variation, learning-based methods
are a better option than pre-programmed feature
identification methods. Such robustness can be achieved
using traditional machine learning approaches for
classification and regression. Support vector machines
(SVMs), K-nearest neighbors, Naive Bayes, Neural
Networks, and Ensemble Learning are among the
learning-based methods used. To learn the desirable
faults, these approaches take into consideration statistical
fluctuations in the defects in the images. One of the
major drawbacks of such systems is that precise
models are required to interpret fault patterns, and they
may still be inadequately resistant to changes in
texturing, lighting, defect complexity, and other factors.

Deep learning has lately been shown to be incredibly
successful in a variety of image-based applications,
such as object detection and classification, facial
detection, pattern recognition, defect diagnostics, target
tracking, and many more. It has shown to be resistant
to backdrop, lighting, color, form, sizes, and intensity
when detecting patterns in pictures. This is very useful
in industrial settings when detecting complicated surface
flaws. Figure 1 and 2 depicts the different ceramic
crack and spot images.

 Furthermore, flaws must not only be discovered but
also the exact size and type of defects must be
determined.

Deep learning is one of the upcoming fields in
computer science right now. We will first gather the
photographs and then enhance them by resizing and
modifying them in this procedure. Following that, we'll
sort them into crack and spot image classes. We can
differentiate them when we have completed dividing
them into separate classes. We can distinguish the
defective classes as cracks and spots of tiles once we've
finished sorting them into distinct classes. We can name
all types of defective photos individually according to

their classifications, therefore our assessment's major
goal is to identify the types of defective images.
Additionally, no special code is required for teaching
different sorts of faults. As stated in various publications
reviewed in this paper, tagged data for diverse flaws
combined with the proper network gives a very flexible
defect detection system.

Inspiration for this study
Workers in the ceramic tile industry must always

labor manually to detect flaws in the tiles. 
The following are some of the issues that can arise:
• There is a considerable risk of inaccuracy because

they are manually detecting flaws with their own
eyes. Second, at a ceramic tile plant, there are a lot of
items, and manually inspecting them can be
exhausting, making office workers dizzy. It always
happens when someone iterates on the same type of
task. However, because machines do not grow weary
from completing a lot of work, they can do iterative
work with greater accuracy and speed.

• Workers in the tile sector are prone to making
mistakes during product inspection, whereas machine
error rates are fixed.

• Finally, in the ceramic tile business, more workers
are required to discover tile flaws, which are a cost
issue, but a machine can lower the cost.

Research Questions
This work is concerned with the problem of using

computer vision to do a programmed assessment of
aesthetic tiles. The detection of abnormalities in
finished tiles has been discovered to be an important
area of programmed mechanical evaluation that has
been largely overlooked by the current wave of
machine vision research. First, we'll look at the benefits
of the tile manufacturing sector. This is followed by a
classification of common tile absconds. Following that,
we examine various recently developed algorithms for
detecting binary types of flaws in plain and completed
tiles.

RQ: How can we tell whether an image is defective?
RQ2: Which model is best for detecting defects in

tile images?

Literature Review 

Surface quality is one of the most critical factors in
establishing the perceived quality of a product in the
ceramic tile manufacturing sector [1, 2]. Due to the
human capacity to discern between acceptable and
faulty tile surfaces, visual examination is frequently
performed manually by operators [3-6]. Unfortunately,
using human operators for visual examination has a
number of drawbacks. In the case of mass-produced
tiles, personally inspecting each tile's surface is time-
consuming. To deal with this, military standards 105E
sample procedures were discovered to be an alternateFig. 3. Sample Images with Different Defects.
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inspection approach [7]. The disadvantage of employing
the sampling approach is that it increases the chance of
allowing defective products to slip through the inspection
procedure [8].

Another drawback of manual examination is the
operator's human aspects. Due to weariness and
repetition, the likelihood of human mistakes is likely to
rise in inspection tasks that demand tedious and
recurring behaviors [9]. Many research has attempted
to automate visual inspection by utilizing Artificial
Intelligence (AI) and Machine Learning approaches in
order to solve the difficulties that result from manual
quality assessment [10, 11]. Putri et al. used a fuzzy
logic system [12] with Gray-Level Co-Occurrence
Matrix (GLCM) feature extraction to identify ceramic
tile surface imperfections. The research was able to
accurately recognize 12 of the 13 test photos, yielding
a 92.31percent accuracy rate. Sharma and Kaur [13]
used a variety of machine learning algorithms to detect
ceramic tile defects, including K-Nearest Neighbor,
Support Vector Machine, and Bayesian Classifier. The
study was able to achieve70.84 percent accuracy for
each model using 24 samples of the test set. 

Artificial Neural Networks (ANN) [14] are one the
Machine Learning methods capable of creating
complicated non-linear decision boundaries [16]. Provides
an example of such an application, in which an ANN-
based classification system was used to automatically
detect weld flaws using 49 testing cases with a 97.96
percent accuracy. The model was able to achieve an
average accuracy of 98.20 percent using 50 tiles
samples. While various researchers have indicated that
ANN is a capable model for detecting ceramic tile
faults, more improvements may be made by assessing
the dataset's pre-processing stage [17]. Finding a
reduced dimensional representation of the image while
still maintaining the critical information included
within the dataset [18] is one way to enhance the
model. PCA has been used as a feature extraction
approach for visual inspection in several publications
[19]. PCA was found to outperform GLCM feature
extraction in one study in leaf categorization, with the
accuracy of 98 percent and 78percent, respectively
[20]. On a collected ceramic dataset. Compared with
SVM (Support Vector Machine) and other deep
learning-based models. 

Faster R-CNN is the suggested model, the model's
accuracy is 94.6 percent [21]. The ability to distinguish
between microscopic cracked surfaces and typical tile
demarcations might be valuable for automating visual
examinations, which are labor-intensive, dangerous at
high elevations, and time-consuming [22]. The
categorization accuracy of human inspection techniques is
around 99.43 percent. Using the CNFA method and
predicted average accuracy of 98.19 percent, classify
faulty and non-defective tiles [23]. The primary goal of
this study was to reduce the pinhole problem while

improving the surface quality of glossy, opaque floor
tile glazes [24]. Overview and thorough discussion of
the influence of ceramic sand particles on the majority
of casting defects [25]. Some locations are ineligible
for usage in the ceramics industry due to their high
alunite concentration. Kaolin must be processed to
eliminate the alunite before it can be utilized in the
ceramics industry [26]. In order to estimate the
refractory material wear in the BOF slag spout zone
based on actual wear measurements taken during BOF
operation, the goal of this work is to identify a
regression model with a reasonable prediction measure
of fit. Regression trees utilizing the CART method
(Classification and Regression Trees), Multivariate
Adaptive Regression Splines (MARS), the Boosted
Trees technique, and Multilayer Neural Networks MLP
type were used in the calculations (Multilayer
Perceptron) [27]. 

Methodology 

The most common DNNs today are convolutional
neural networks (CNNs), which feature a number of
convolution layers. In these networks, each layer
creates a (fmap) feature map, which is an abstraction of
higher-level data that contains critical yet unique
information from the imputed data. By employing a
very deep collection of layers, modern CNNs are
capable of obtaining higher performance. CNNs are
utilized in a broad range of applications, including
robotics, speech recognition, scene analysis, and
gameplay, among others. We focused on applying CNN
in image processing to distinguish cracked-tile surface
images and spotted-tile surface images.

The collection of 2-D input feature maps is used to
represent the activations of the input layer in
computations, with each channel stated independently.
A convolutional neural network consists of layers made
up of high-dimensional convolutions. Every channel
that emerges from the filter stacks for each channel is
convolved by a different 2-D filter, which is why the 2-
D filters are commonly referred to as 3-D filters. At
every node in the network, the convolution's output is
treated with a multi-channel summation approach. The
resulting filters could have a one-dimensional bias,
however, modern networks have eradicated these
biases from the layers.

The output from activations with a single output
channel of the map is the outcome of this calculating
procedure. By applying additional 3-D filters to the
same input, many output channels may be produced.
To speed up filter weight reprocessing, numerous
feature maps from the input may be produced in
batches. For classification tasks, a small number of
fully connected (FC) layers—typically one to three—
follow the main convolution layers. A DNN can
include a range of discretionary layers, such as non-
linearity, normalization, and pooling, in addition to
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convolution and fully linked layers.
The above figure represents the system implementation

flow of deep learning algorithms.

Transfer Learning: VGG16 and VGG19 
The large set of labeled photographs for computer

vision research is called as ImageNet in Deep Learning.
The purpose of this collection is to deliver a source and
to promote research in the area of computer vision,
object recognition, image classification, and object
localization. “ImageNet is applicable in the platform of
deep learning and Convolutional Neural Networks. The
goal of this image classification trial is to train a model
that can correctly classify an input image into 1,000
distinct object groups. As per our requirement of the
dataset, we can configure the last layer as different
distinct label groups. For example, the large volume of
images classifies as four objects mean, flattening the
output layer size to four. Likewise, the predefined
model generation is possible for any kind of image
dataset up to the maximum class label of a thousand.

VGG16 Architecture
The above figures represent the 16 layers summary

of VGG with respective layer filter size and activation
function. VGG19 architecture is similar to VGG16, it
contained 16 layers of CNNs and 3 fully connected
layers and a final layer for softmax function instead of
13 layers of CNNs in VGG16.

Working Model of VGG19 Architecture
Input RGB Images size of 224×224
Preprocessing
(Mean RGB value Calculation from each pixel)
Apply VGG 19 Model

Fig. 4. System Implementation flow of Deep Learning Algorithms.

Fig. 5. 16 Layers Summary of VGG with Respective Layer.
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• 16 CNN and Max Pool layers with respective
filters, ReLuin each layer)

• Formulate the three fully connected layers with
the output layer of value two with the Softmax
activation function.

Experiments 
To evaluate the recommended architecture's classification

capabilities, we employed smooth surface tiles with
defects. In the photos collection, there are above 4000
images with crack, above 5000 images with spot, a
total of 12493 images. During training, however, the
picture proportions were automatically scaled and
resized to 224 by 224. Figure 4 illustrates a dataset of
cracked and non-crack smooth surfaces of floor tiles
collected with a low-cost camera in various locations to
test and confirm our model's classification capabilities
of convolutional neural networks (CNNs), which
feature a number of convolution layers.

Data Augmentation and Pre-processing Methods 
To avoid over-fitting and increase generalization

capability, we employed a variety of deep learning
algorithms to increase the size of the data set. The
following seven affine transform algorithms were
heavily used: 

(1) Data rescaling: We multiplied our data by a
predefined number before initiating any training
procedure. 

(2) Rotation range: At random, each 40×40 picture
was rotated at 180 degrees. 

(3) Shift range: This method moves pictures
randomly horizontally or vertically. 

(4) Shear range: We used a shear range of 20%,
which reduces the picture angles in a counter-clockwise

direction, comparable to radians. 
(5) After that, each image was horizontally flipped.

In order to increase training stability and speed, each
pixel of the image was normalized to get a zero mean
and unit variance.

Proposed Algorithm 
Due to the complex and dynamic nature of ceramic

tile faults, identifying such conditions remains a difficult
problem for automation engineers, resulting in limited
detection capabilities and a large number of false
alarms in currently available systems. We propose a
Deep Learning approach, to overcome these performance
limits. As a consequence, learning bias and generalization
variance may be greatly reduced. The suggested
method may be broken down into the following steps:

Fig. 6. Left - Tile Sample with Crack; Right - Tile Sample without Crack.

Fig. 7. Steps for Pre-processing Methods.
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Algorithm for training phase:

Algorithm for Detection phase:
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Hyperparameters of the neural network to increment
exactness

• the number of hubs in layers
• Actuation capability
• the learning rate
• Dropout rate

• Cluster size
• Ages

The quantity of neurons in each secret layer is the
underlying hyperparameter to be tuned. In this case,
each layer's number of neurons is fixed to be
something very similar. It can likewise be ready
another way. The number of neurons should be

Fig. 8. Size of Training Images. Fig. 9. Size of Testing Images.

Fig. 10. Sample snap of Vgg16 Model Summary 1.
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changed relying upon how complex the response is.
Inside each layer, a boundary is called an initiation
capability. The info layer gets input information first,
then secret layers, and lastly the result layer. The result
esteem is situated in the result layer. The info esteems
consistently change as they move between different

layers layer as per the enactment capability. How a
layer's feedback values are changed over into yield is
not entirely set in stone by the enactment capability.
The result upsides of one layer are then moved as info
values to the accompanying layer. An enhancer is
dispensed once the layers of a brain network have been

Fig. 11. Sample snap of Vgg16 Model Summary 2.

Fig. 12. Sample snap of Vgg19 Model Summary.
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gathered. To get the most reduced conceivable misfortune
capability, the streamlining agent should change the
learning rate and loads of the neurons in the brain
organization. The best exactness or least measure of
misfortune is accomplished by utilizing a streamlining
agent.

Overfitting might be tried not by adding regularization
layers to a brain organization. After the principal
stowed away layers, cluster standardization is applied.
Each cluster's qualities that are shipped off the group
standardization layer are standardized. The Dropout
layer is an extra regularization layer. A specific number
of neurons are dropped indiscriminately into a layer.
The lost neurons are not generally utilized. The dropout
rate decides how rapidly the small part of neurons
declines. The clump size hyperparameter determines
the number of tests that should be handled before the

inner model boundaries are refreshed.
Consider a clump as a for-circle making expectations

while repeating north of at least one example. The
expectations are contrasted with the expected result
factors at the bunch's decision, and a blunder is figured.
An extra boundary called “ages” decides how often the
learning calculation will run over the full preparation
dataset. Each example in the preparation dataset has
gotten an opportunity to change the interior model
boundaries once during an age. At least one groups
make up a period. 

Implementation Results 
The sample size of the training and testing images

used for identifying the defects in tiles is given in Figs.
8, 9.

The above section includes an in-depth analysis of
the proposed algorithm for various numbers of training
and testing data sizes, as well as a comparison with
current approaches. We conducted a number of extensive
experiments and received a variety of outcomes, but
we'll show you our best ones here.

As shown in Figs. 10, 11, 12 –VGG-16 and VGG-19
is a snap of layer deep convolutional neural network.
You may import a pre-trained version of the network,
which has been trained over an input image. 

As shown in Figs. 13 and 14, both predefined model
works more are as similar to each other but the
additional layers of VGG19 increase the power of
computation and accuracy. 

Conclusion

A deep learning-based ceramic tile defect detection
system is proposed and simulated in this work. Our
rigorous testing shows that our technique works with
both small tile crack and no-crack datasets. The
suggested method has a detection rate of more than
99%, according to the research. Another advantage of
the proposed technique is that it does not need precise
mathematical modeling of flaws. As a result, it can
identify a wide range of known and unknown tile
attributes at the same time. In the future, additional
types of tile-surface defects will be gathered from a
variety of tile surfaces and patterns, and a more robust
classifier will be built.

Model Epochs Accuracy

VGG19
5, 10, 15, 20, 25, 
30, 35, 40, 45, 
50...

0.6712, 0.7551, 0.8214, 0.8345, 
0.8595, 0.8632, 0.8943, 0.9041, 
0.9099, 0.9177 ...

VGG16
5, 10, 15, 20, 25, 
30, 35, 40, 45, 
50...

0.6612, 0.7371, 0.8115, 0.8149, 
0.8492, 0.8562, 0.8743, 0.8941, 
0.9000, 0.9077 ...

Fig. 13. VGG 16 Model Accuracy.

Fig. 14. VGG 19 Model Accuracy.



88 D. Sivabalaselvamani, K. Nanthini, S. Vanithamani and L. Nivetha

Future Work

In the manufacturing sector, defects monitoring for
the large volume of production units is one of the
challenging tasks. Automatic defect detection for
different varieties of the same products and different
classification types prediction with smart applications
is highly demandable in every manufacturing field like
an iron rods, glass, tiles, etc. Most of the research
initiative starts with binary classification like defect
and non-defect product with the pre-defined model.
Now the research direction towards, multi-classification
of defect to be detected on the different variety of same
product with the intervention of deep learning (large
volume of image and video analysis) with smart
application shows.
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