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Self-compaction concrete possesses non-segregation characteristics and the ability to flow through the heavily reinforced
section with required viscosity. The addition of fibres in SCC enhances the strength of the concrete and reduces the brittle
nature. Many such fibres like plant fibres, basalt, the glass was used in SCC as single reinforcement or hybrid reinforcement.
This article focuses on the prediction of the strength of SCC infused with glass fibres. The input data was derived from various
kinds of literature arranged in the format of nine input variables viz., cement, coarse and fine aggregate, water to powder ratio,
superplasticizer, viscous modifying agent VMA, fly ash, GGBS/silica. A dataset of 128 samples collected was used to predict
the output variables such as compressive strength and flexural strength of SCC with glass fibres. The mathematical modelling
was deployed using ANN in MATLAB. The output of the developed model was assessed through RMSE (root mean square
error) and R2 (regression coefficient). It was concluded that the model can further be utilized to predict the strength
(compressive and flexural) of SCC concrete. 
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Introduction

Concrete has become inevitable material in everyday
life and the per capita consumption has raised to a
greater extent. With its diverse applications, different
forms of special concrete-like self-compaction concrete,
self-consolidating concrete are evolving to meet out the
demands of the industry. Self-compaction concrete has
the ability to flow and fill up the formwork without any
vibration and also resistance against segregation. The
high workable mix of SCC increases the speed of
construction and reduces the manpower requirement.
The production and characteristics of SCC depend
mainly on mix proportioning and workability of the
concrete mix [1]. The rheological characteristics and
strength parameters should meet the prescribed limits
to achieve SCC. The high workability of SCC was
achieved through reduction of water content/coarse
aggregate, use of superplasticizer/viscous modifying
agent (VMA), and increase in powder content in the
form of fly ash, silica fume, GGBS [2] and rice husk
ash [3]. The SCC mix was evaluated based on an
experimental procedure such as slump test, L-box test,
U-box test, V-funnel test, and J-ring test [4]. 

Construction technology has taken a new shape after
the introduction of fibres in concrete. The inclusion of
fibres in concrete leads to an increase in strength,

durability, impact resistance, and ductility and also
controls the bleeding and cracking of fresh and
hardened concrete respectively [5, 6]. SCC concrete
was reinforced with different types of man-made fibres
viz., steel [7,8], basalt [9-11], and natural fibres viz.,
banana [12] as single reinforcement. Some of the
combinations of hybrid reinforcement in the form of
Steel and carbon, steel and nylon, steel and polypropylene,
steel and basalt, glass and polypropylene are also used
in SCC.

Steel fibres are the most common fibre in the SCC.
Many researchers have established the facts of utilizing
steel fibres in SCC. Abdalla M. Saba et al. [13] have
investigated SCC with different percentages of steel
fibre (0.25, 0.50, 0.75, and 1.0%) and found that 0.5%
steel fibres have attained desired workability and
strength. Iman Ferdosian and Aires Camoes Center
[14] revealed that 1% volume fraction of steel fibres in
Ultra-High-Performance Concrete UHPC have increased
the compressive strength, modulus of elasticity,
toughness and flexural strength which was justified
through the energy-absorption capacity of the
specimens. Ni ng Li et al. [15] experimented self-
compaction concrete for impact resistance with the
addition of steel fibres (0.5%, 0.75%, 1.0%). The
workability of SCC was decreased with an increase in
steel fibre percentage and was maintained to have
uniform workability by altering the superplasticizer
dose. The impact resistance measured in terms of
impact toughness index was higher for SCC with steel
fibre compared to steel fibre reinforced normal
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concrete. Valeria Quiceno Pérez [16] utilized the digital
image correlation technique for evaluating the
mechanical properties of SCC with steel fibres. The
inclusion of steel fibres has reduced the sudden failure
by improving the mechanical properties after cracking
load and preventing the propagation of cracks. 

The most widely used fibre in SCC next to steel
fibres are glass fibres. Mastali et al. [17] conducted
experimental studies on the mechanical properties of
SCC with recycled glass fibres (0.25%, 0.75%, 1.25%)
extracted from unusable glass fibre reinforced polymers
sheets. Scanning Electron Microscopic study was
performed to explore the failure mechanism along with
statistical and analytical investigation to establish a
correlation between impact resistance and mechanical
properties of concrete. The addition of recycled glass
fibres improves the mechanical properties till the
addition of 1.25%. However, SCC with 0.75% glass
fibre exhibit good flexural strength and impact
resistance. Yahya R. Atewi [18] carried out investigation
on mechanical and permeability characteristics of SCC
with nano-silica (2%, 4%) and glass fibres (0.35%,
0.7%, 1%, 1.5%). The authors have found that nano-
silica can be used upto 2% and glass fibres at 0.7%
based on the results of compressive strength, modulus
of elasticity, tensile strength, fracture energy, permeability,
sorptivity, and rapid chloride permeability test. Subhan
Ahmad [19] examined the properties of SCC with glass
and polyvinyl fibres in the ratio of 0.1%, 0.2% and
0.3% by volume. The inclusion of 0.3% glass and
polyvinyl fibre has decreased the workability of SCC
concrete. Based on the fresh and hardened properties of
SCC, the addition of glass fibres (0.2%) shows good
improvement over the SCC with polyvinyl fibres.
Sivakumar [20] determined the influence of Metakaolin
and glass fibres (0.1%-0.8%) through the rheological,
mechanical and durability properties of SCC. The
results revealed that the addition of glass fibres does
not have a significant effect on compressive strength, a
small increase in water absorption, reduced chloride
permeability, increased tensile and flexural strength and
optimum content was 0.8% of glass fibre. The waste
glass in either form of fibre or powder, was also used
in concrete for partial replacement of cement [21-23].

Artificial Neural Network and Machine learning
models prove to be excellent techniques for predicting
the non-linear behaviour of the concrete and
optimization [45, 46]. The suitable mix design and
prediction of strength and durability properties of SCC
can be achieved through ANN modelling.

Marcello et al. [24] predicted the flexural response of
fiber reinforced concrete by deploying 400 datasets
using Five different ANNs. The input parameters were
aspect ratio and volume fraction of fiber along with the
compressive strength. The Bayesian regularization
algorithm was used and achieved a regression fit value
more than 92%. The best network was selected based

on mean square error values. Venkata Subash et al. [25]
modelled an ANN with 123 self-compaction concrete
mixtures to predict the compressive strength and split
tensile strength with input parameters such as cement
content, water cement ratio, type and percentage of
mineral/chemical admixture. Marquardt back propagation
algorithm was used and achieved satisfactory statistical
indicators such as mean square error MSE and
correlation coefficient.

Paul O. Awoyera et al. [26] framed genetic programming
GP and ANN model to predict the compressive
strength, split-tensile and flexural strength of geopolymer
SCC. The input parameters include the quantities of
raw materials and fresh mix proportions. Good
correlation was established between the experimental
and predicted values for both GP and ANN. However,
authors suggested GP as the preferred model based on
the values of MSE and R2. Danial Nasr et al. [27]
predicted the mechanical and durability properties of
self-compaction concrete with natural Zeolite and
nano-silica as partial replacement for cement. The input
parameters considered for the construction of ANN
includes the quantities of Portland cement, natural
Zeolite, nano-silica, slump flow diameter, V-funnel
flow time and age of concrete to predict compressive
strength, water absorption, flexural strength, electrical
resistivity. Feed-forward neural network was created to
process the information in forward direction by varying
the number of neurons in hidden layer. The correlation
between experimental and predicted values assessed
through correlation coefficients was higher than 0.94
for all the models. 

Mahmoud Abu Yaman et al. [28] compared two
different back propagation architecture developed
through ANN for the two different datasets of self-
compaction concrete mixtures. Slump and compressive
strength of concrete are the outputs with quantity of
basic ingredients such as input such as cement, fine and
coarse aggregate, fly ash, water-cement ratio and
superplasticizer. The correlation coefficient R2 was
achieved between 0.63-1.0 for different models and
authors have suggested ANN to be effective tool for
proportioning self-compaction concrete. Hadi Mashhadban
et al. [29] deployed an intelligent system through ANN
and particle swarm optimization algorithm PSOA to
generate a polynomial model for predicting steel and
polyphenylene sulfide fibre reinforced SCC properties.
It was concluded by the authors that ANN integrated
with PSOA predicts the mechanical properties with
accuracy and precision. Rafat Siddique [30] developed
two ANN models to predict the 28 days compressive
strength with six and eight parameters such as cement,
sand, aggregate, fly ash, bottom ash water and water/
cement ratio and, superplasticizer. The ANN model
with six input parameters achieved correlation coefficient
above 0.9 and proved that powder content (cement and
fly ash) has maximum effect on the strength of
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concrete. 
Many researchers have modelled the characteristics

of SCC concrete with different mineral admixtures
using ANN and machine learning techniques [31, 32].
However, computing the strength of SCC with the
addition of glass fibres has not been explored.  

Research Significance 
Very few researchers have utilized glass fibres and

fly ash for the production of SCC for investigating the
strength and durability properties. But no researchers
have modelled the strength characteristics of SCC with
glass fibres. Hence this paper presents the results of an
experimental investigation carried out on SCC with
glass fibres and also developed an ANN model to
predict the compressive strength and flexural strength
using the NN tool in MATLAB. 

Experimental Investigation 

Resources 
OPC of grade 53 and fly ash (10%) was used as

binder material for the preparation of SCC. Aggregates
available in the vicinity were used as coarse aggregate
CA and fine aggregate FA with a specific gravity of
2.68 and 2.67 respectively. The coarse aggregate size
was varying between 10-12.5 mm and river sand
conforming zone II as per IS 383 [33] was used as fine
aggregate.  Ordinary potable water, superplasticizer SP
along viscous modifying agent VMA was used to
obtain the desired workability. Cem-FIL high dispersion
glass fibres with the characteristics as described in
Table 1 were utilized in this study. 

Mix proportion and casting
Various trial mixes were prepared as per EFNARC

guidelines to arrive at the final mix proportion as
tabulated in Table 2. Different fractions (0.1%-0.7%) of
glass fibres were added in the designed mix by weight
of total cementitious material and the quantity of each
material utilized was is shown in Table 2. The mix
designation GF0 refers to the normal SCC without the
addition of glass fibres whereas GF1 denotes the SCC

with 0.1% of glass fibre and GF5 represents the SCC
with 0.5% of glass fibre content. 

The casting process was initiated by adding fine and
coarse aggregate into the pan mixer and made to
revolve for 1 minute. The next step involved the
pouring of 30% of the total required water with a
revolving time of 2 min. The binding material was then
added and mixed for about 2 min to obtain a
homogeneous mixture. For NSCC mix, remaining
water along with SP and VMA were added and
allowed for 2 min mixing. For SCC mixes with glass
fibres, the fibres are dispensed before the addition of
remaining water, SP, and VMA and mixed for an
additional time of 2 min. 

Test methods 

Fresh property of SCC

The preparation of self-compaction concrete mainly
depends on its fresh properties. The fresh properties of
self-compaction concrete were found using various
tests such as slump flow, L-box, and V- funnel test as
per BS EN 12350 [34]. The slump flow and T500 time
are meant for assessing the flowability (filling ability)
and rate of flow in the absence of obstructions. The
time taken for the concrete to spread over a diameter of
500 mm is measured as T500 time. Slump flow is the
average of the largest diameter and diameter measured
at right angles to the largest diameter. L-box predicts
the passing ability by allowing the concrete to flow
through the obstructions (reinforcing bars) to fill up the
horizontal part of the L-box. The blocking ratio (h2/h1)

Table 1. Physical and mechanical properties of glass fibres.

Description Value Unit 

Length 12 mm

Diameter 14 m

Aspect ratio 857.14 -

Specific gravity 2.68 -

Tensile strength 1700 MPa

Modulus of elasticity 72000 MPa

Table 2. Mix proportion and mix designation of various SCC mixes.

Mix 
designation

Cement
kg/m3

Fly ash 
kg/m3

GF
%

FA
kg/m3

CA
kg/m3

Water
kg/m3

SP
kg/m3

VMA
kg/m3

GF0 325 150 - 950 830 160 8.5 1.6 

GF1 325 150 0.1 950 830 160 8.5 1.6 

GF2 325 150 0.2 950 830 160 8.5 1.6 

GF3 325 150 0.3 950 830 160 8.5 1.6 

GF4 325 150 0.4 950 830 160 8.5 1.6 

GF5 325 150 0.5 950 830 160 8.5 1.6 

GF6 325 150 0.6 950 830 160 8.5 1.6 

GF7 325 150 0.7 950 830 160 8.5 1.6 
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was measured by dividing the height of concrete at the
end of the horizontal portion (h2) by the height of
concrete at the beginning of the horizontal portion (h1).
The viscosity and segregation resistance of the SCC
was assessed through time taken for the fresh concrete
to pour out of the V-funnel. 

Hardened property of SCC

The compressive strength and flexural strength of the
concrete mixes with and without glass fibres were
found as per IS 516: 1959. The compressive strength
test was performed on cubes of size 150 mm tested on
a computerized testing machine of 200 T capacity after
28 days of casting, as shown in Fig. 1. The beam
specimens of size 100 mm × 100 mm × 500 mm were
tested for their flexural strength on a flexural testing

machine of capacity 10 T after 28 days of casting and
curing. 

Modelling the Strength Properties of Gfrscc

ANN Technique
Artificial Neural Network ANN resembles the

functioning of our human brain consisting of
interconnected neurons as their processing element.
The neurons are arranged in layers and they can be
skilled up to perform a certain task by regulating the
weights or connection values between them. Fig. 5
shows the schematic picture of the ANN model. I1, I2
are the input elements with some weights such as W1,
W2. Each input element is associated with the network
through an activation function to estimate the output.
The weights are transmitted to the network through
signals and can be optimized through the training
process. Any ANN model consists of two phases such
as training and testing. During the training phase, the
output is predicted through the input data, the
difference between the measured and predicted output
is reduced by adjusting the weights of each input.

Database 
The database used in the neural network training was

collected from various works of literature [35-44]
utilized glass fibres in preparation of SCC are shown in
Table 3. The data collected from several studies were
grouped to finalize the input variables as follows;

Cement (kg/m3)
Fly ash (kg/m3)
Fine aggregate FA (kg/m3)

Fig. 1. Compressive test on cube.

Table 3. Database for ANN training.

Sl.No. Cement Fly ash FA CA
Water con-

tent
SP VMA SF/GGBS GF Ref 

1 413.2 0 826 722 163 7.7 0 163 0

[35]
2 413.2 0 826 722 163 7.7 0 163 0.1

3 413.2 0 826 722 163 7.7 0 163 0.2

4 413.2 0 826 722 163 7.7 0 163 0.3

5 415 110 705 894 196 2.8 0 0 0

[36]

6 415 110 705 894 196 2.8 0 0 0

7 415 110 705 894 196 2.8 0 0 0

8 415 110 705 894 196 2.8 0 0 0.5

9 415 110 705 894 196 2.8 0 0 0.5

10 415 110 705 894 196 2.8 0 0 0.5

11 415 110 705 894 196 2.8 0 0 1

12 415 110 705 894 196 2.8 0 0 1

13 415 110 705 894 196 2.8 0 0 1

14 415 110 705 894 196 2.8 0 0 2

15 415 110 705 894 196 2.8 0 0 2

16 415 110 705 894 196 2.8 0 0 2
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Table 3. Continued.

Sl.No. Cement Fly ash FA CA
Water 

content
SP VMA SF/GGBS GF Ref 

17 450 900 900 650 190 5 0 0 0

[37]

18 450 900 900 650 190 5.12 0 0 0.1

19 450 900 900 650 190 5.15 0 0 0.2

20 450 900 900 650 190 5.4 0 0 0.3

21 450 900 900 650 190 5.65 0 0 0.4

22 450 900 900 650 190 5.85 0 0 0.5

23 450 900 900 650 190 6 0 0 0.6

24 450 900 900 650 190 6.15 0 0 0.7

25 450 900 900 650 190 6.25 0 0 0.8

26 325.68 116.315 1011.77 794.96 176.8 0.03 0.0049 23.263 0

[38]27 325.68 116.315 1011.77 794.96 176.8 0.03 0.0049 23.263 0.25

28 325.68 116.315 1011.77 794.96 176.8 0.03 0.0049 23.263 0.5

29 503.5 740 740 890 195 2 1 26.5 0.2

[39]
30 503.5 740 740 890 195 2 1 26.5 0.4

31 503.5 740 740 890 195 2 1 26.5 0.6

32 503.5 740 740 890 195 2 1 26.5 0.8

33 412.5 137.5 768.5 768.6 192.5 5.5 0 0 0

[40]

34 412.5 137.5 768.5 768.6 192.5 5.5 0 0 0.35

35 412.5 137.5 768.5 768.6 192.5 5.5 0 0 0.7

36 412.5 137.5 768.5 768.6 192.5 5.5 0 0 1

37 412.5 137.5 768.5 768.6 192.5 5.5 0 0 1.25

38 412.5 137.5 768.5 768.6 192.5 5.5 0 0 1.5

39 412.5 137.5 768.5 768.6 192.5 5.5 0 11 0

40 412.5 137.5 768.5 768.6 192.5 5.5 0 11 0.35

41 412.5 137.5 768.5 768.6 192.5 5.5 0 11 0.7

42 412.5 137.5 768.5 768.6 192.5 5.5 0 11 1

43 412.5 137.5 768.5 768.6 192.5 5.5 0 11 1.25

44 412.5 137.5 768.5 768.6 192.5 5.5 0 11 1.5

45 412.5 137.5 768.5 768.6 192.5 5.5 0 22 0

46 412.5 137.5 768.5 768.6 192.5 5.5 0 22 0.35

47 412.5 137.5 768.5 768.6 192.5 5.5 0 22 0.7

48 412.5 137.5 768.5 768.6 192.5 5.5 0 22 1

49 412.5 137.5 768.5 768.6 192.5 5.5 0 22 1.25

50 412.5 137.5 768.5 768.6 192.5 5.5 0 22 1.5

51 530 70 725 775 210 0.8 0.3 0 0
[41]

52 530 70 725 775 210 0.8 0.3 0 0.6

53 400 70 830 805 140 0.8 0.3 0 0

[42]
54 400 70 830 805 140 0.8 0.3 0 0.1

55 400 70 830 805 140 0.8 0.3 0 0.2

56 400 70 830 805 140 0.8 0.3 0 0.3

57 576 879 879 777 183 5.6 0 0 0

[43]

58 576 879 879 777 183 5.6 0 0 0.25

59 576 879 879 777 183 5.6 0 0 0.5

60 576 879 879 777 183 5.6 0 0 0.75

61 412 879 879 777 183 5.6 0 160 0

62 412 879 879 777 183 5.6 0 160 0.25
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Table 3. Continued.

Sl.No. Cement Fly ash FA CA
Water 

content
SP VMA SF/GGBS GF Ref 

63 412 879 879 777 183 5.6 0 160 0.5
[43]

64 412 879 879 777 183 5.6 0 160 0.75

65 940 0 940 0 320 3.4 0 132 0

[44]

66 940 0 940 0 320 3.4 0 132 0

67 940 0 940 0 320 3.4 0 132 0

68 940 0 940 0 320 3.4 0 132 0

69 940 0 940 0 320 3.4 0 132 0.25

70 940 0 940 0 320 3.4 0 132 0.25

71 940 0 940 0 320 3.4 0 132 0.25

72 940 0 940 0 320 3.4 0 132 0.25

73 940 0 940 0 320 3.4 0 132 0.25

74 940 0 940 0 320 3.4 0 132 0.25

75 940 0 940 0 320 3.4 0 132 0.25

76 940 0 940 0 320 3.4 0 132 0.25

77 940 0 940 0 320 3.4 0 132 0.25

78 940 0 940 0 320 3.4 0 132 0.25

79 940 0 940 0 320 3.4 0 132 0.25

80 940 0 940 0 320 3.4 0 132 0.25

81 940 0 940 0 320 3.4 0 132 0.25

82 940 0 940 0 320 3.4 0 132 0.25

83 940 0 940 0 320 3.4 0 132 0.25

84 940 0 940 0 320 3.4 0 132 0.25

85 940 0 940 0 320 3.4 0 132 0.25

86 940 0 940 0 320 3.4 0 132 0.25

87 940 0 940 0 320 3.4 0 132 0.25

88 940 0 940 0 320 3.4 0 132 0.25

89 940 0 940 0 320 3.4 0 132 0.75

90 940 0 940 0 320 3.4 0 132 0.75

91 940 0 940 0 320 3.4 0 132 0.75

92 940 0 940 0 320 3.4 0 132 0.75

93 940 0 940 0 320 3.4 0 132 0.75

94 940 0 940 0 320 3.4 0 132 0.75

95 940 0 940 0 320 3.4 0 132 0.75

96 940 0 940 0 320 3.4 0 132 0.75

97 940 0 940 0 320 3.4 0 132 0.75

98 940 0 940 0 320 3.4 0 132 0.75

99 940 0 940 0 320 3.4 0 132 0.75

100 940 0 940 0 320 3.4 0 132 0.75

101 940 0 940 0 320 3.4 0 132 0.75

102 940 0 940 0 320 3.4 0 132 0.75

103 940 0 940 0 320 3.4 0 132 0.75

104 940 0 940 0 320 3.4 0 132 0.75

105 940 0 940 0 320 3.4 0 132 0.75

106 940 0 940 0 320 3.4 0 132 0.75

107 940 0 940 0 320 3.4 0 132 0.75

108 940 0 940 0 320 3.4 0 132 0.75

109 940 0 940 0 320 3.4 0 132 1.25
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Coarse aggregate CA (kg/m3)
Water content (kg/m3)
Superplasticizer dosage SP (%)
VMA dosage (%)
Silica fume SF/GGBS (kg/m3)
Glass Fibre GF (%)

The input layer was consisting of nine variables as a
processing unit whereas the output layer consists of
two neurons viz., Compressive strength and Flexural
strength at 28 days. Fig. 6 depicts the number of
neurons available in the input, output, and hidden layer
of the neural network architecture developed using
MATLAB. 

Training and testing of ANN
The training of the neural network was done through

the data collected from the literature using the
Levenberg algorithm with 9 input neurons and 2 output
neurons. During the training phase, the network learns
the data passed to it, modifies and updates the weights/
bias to predict the strength characteristics of SCC with
glass fibres. The testing phase was done using the
experimental data of the current research work. 

Results and Discussions 

Fresh property of SCC
The rheological properties such as slump flow, L-

box, and V- funnel test were studied for glass-

Table 3.  Continued.

Sl.No. Cement Fly ash FA CA
Water 

content
SP VMA SF/GGBS GF Ref 

110 940 0 940 0 320 3.4 0 132 1.25

[44]

111 940 0 940 0 320 3.4 0 132 1.25

112 940 0 940 0 320 3.4 0 132 1.25

113 940 0 940 0 320 3.4 0 132 1.25

114 940 0 940 0 320 3.4 0 132 1.25

115 940 0 940 0 320 3.4 0 132 1.25

116 940 0 940 0 320 3.4 0 132 1.25

117 940 0 940 0 320 3.4 0 132 1.25

118 940 0 940 0 320 3.4 0 132 1.25

119 940 0 940 0 320 3.4 0 132 1.25

120 940 0 940 0 320 3.4 0 132 1.25

121 940 0 940 0 320 3.4 0 132 1.25

122 940 0 940 0 320 3.4 0 132 1.25

123 940 0 940 0 320 3.4 0 132 1.25

124 940 0 940 0 320 3.4 0 132 1.25

125 940 0 940 0 320 3.4 0 132 1.25

126 940 0 940 0 320 3.4 0 132 1.25

127 940 0 940 0 320 3.4 0 132 1.25

128 940 0 940 0 320 3.4 0 132 1.25

Fig. 2. Slump flow test.

Fig. 3. L box test.
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reinforced SCC concrete as shown in Fig. 2, 3 and 4.
and the results were presented in Table 4 and Fig. 7.
The slump flow and time required for normal concrete
was 750 mm and 2.5 sec, respectively. With the
inclusion of glass fibres from 0.1%-0.7%, the slump
flow reduces from 745 mm-670 mm and T500 time
increases from 2.8-4.5 as observed by several
researchers [42, 38]. A similar trend is observed for L-
box and V-funnel tests but the values attained as per
the limits provided by EFNARC. The reason behind
the reduction in flow property of glass fibre reinforced
concrete is due to the increase in glass fibre content. 

Hardened Property of GRSCC
The hardened property such as compressive strength

and flexural strength of glass fibre reinforced concrete
was tested as per IS 516 and the results are presented in
Table 5 and presented in Fig. 8. The concrete without
glass fibre achieved a compressive strength and
flexural strength of 45.8 N/mm2 and 6.5 N/mm2. There
was an increase in compressive strength by 1.74%,
14.4%, 19.4%, 21.17%, 16.5%, 9.38%, 2.4% for
concrete with 0.1-0.7% glass fibre, respectively.

Authors Y. R. Atewi [18], S. Ahmad [42] have reported
a similar result, that there is an increase in compressive
strength for SCC with glass fibres up to 0.7%. The
flexural strength of glass fibre reinforced concrete
exhibited 5.8%, 26.4%, 33.8%, 45.5%, 27.9%, 25%,
13.2% for 0.1-0.7% fibre content, respectively. The
increase in flexural strength was in the range of 6%-
14% as reported by [17] The strength showed an
increasing trend for concrete with 0.1%, 0.2%, 0.3%

Fig. 4. V-funnel test.

Table 4. Fresh Property of GFRSCC.

Fresh property GF0 GF1 GF2 GF3 GF4 GF5 GF6 GF7
Limits as per 

EFNARC

Slump flow (mm) 750 745 730 720 705 695 680 670 650-800

T500 (sec) 2.5 2.8 3 3.2 3.6 4.1 4.3 4.5 2-5

L box ratio (h2/h1) 0.95 0.94 0.92 0.9 0.89 0.86 0.85 0.83 0.8-1

V-funnel time T0 (sec) 6.8 7 7.3 7.5 8 8.8 9.4 9.8 6-12

V-funnel time T5 (sec) 7 7.1 7.5 7.6 8.2 9.1 9.5 10 +3 T0

Fig. 5. ANN Schematic model.

Fig. 6. ANN architecture.

Fig. 7. Slump of GFRSCC.

Table 5. Strength of GFRSCC at 28 days.

Mix 
designation

Compressive strength 
at 28 days
(N/mm2)

Flexural strength 
at 28 days
(N/mm2)

GF0 45.8 6.5

GF1 48.6 7.2

GF2 52.4 8.6

GF3 54.7 9.1

GF4 55.5 9.9

GF5 53.2 8.7

GF6 50.1 8.5

GF7 46.9 8.2
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and 0.4% and showed a decreased trend for 0.5%,
0.6% and 0.7%, but the values are still higher than the
normal concrete. Maximum compressive and flexural
strength was achieved for self-compaction concrete
with 0.4% glass fibre. The decreasing trend in strength
is attributed to the reduction in flowing capacity and
clogging of fibres due to an increase in fibre content. 

Fig. 9 shows the relation between compressive
strength and flexural strength of glass fibre reinforced
concrete. The regression coefficient (R2) was obtained
as 0.91 (91.9%) which indicates that there is a good
correlation between the predicted compressive strength
and flexural strength of GFRSCC [25, 27]. 

ANN modelling of GFRSCC
A database of 128 experimental values was collected

from various sources of pieces of literature.  An ANN
model was developed using Neural Network Tool box
in MATLAB 2020 and trained according to the
Levenberg optimization method. The validation of the
proposed model was performed to check the accuracy
through the experimental values conducted by the
authors. The correlation co-efficient achieved for
training, testing, and validation falls above 99% as
shown in Fig. 10, which indicates that there exists a
good relationship between the actual and predicted
values during the different phases in ANN modelling.

The predicted compressive strength and flexural
strength were then compared with experimental output
through the statistical indicators such as R2 (Absolute
fraction of variance), and Root Mean Square Error
(RMSE) using the equation (1) and (2). 

(1)

 (2)

Where Opi – Output predicted from ANN, Oai – Actual

output from literature and experiment, and n- the total
amount of data. 

The relation between the input and output variable
can be well established through regression analysis.
The efficiency of the regression analysis is evaluated
through R2 and RMSE. The values of R2 and RMSE
values of compressive strength and flexural strength
are shown in Table 6. The R2 value of the model gives
the proportion of variance in the output variable
whereas RMSE provides the average distance between
predicted and experimental values. The R2 value for
experimental and predicted compressive strength and
flexural strength was achieved as 93% and 94%
respectively, which reveals a good correlation as shown

R
2

=1
i Opi Oai– 2

i Oai 2
----------------------------
 
 –

RMSE=
1

n
---i Opi Oai– 2

Fig. 8. Strength of GFRSCC at 28 days.

Fig. 9. Relation between compressive strength and flexural
strength of GFRSCC.

Fig. 10. ANN Training, testing, validation.

Table 6. Statistical indicators.

Indicator Compressive strength Flexural Strength

RMSE 3.53 0.32

R2 0.93 0.94
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in Fig. 11 and 12. The RMSE values are 3.53 and 0.32
for compressive strength and flexural strength, which
indicates that the ANN model developed was able to
predict flexural strength with more accuracy than
compressive strength.  

Conclusion

The novel methodology of utilizing Artificial Neural
Network for predicting the compressive strength and
flexural strength of concrete with the addition of glass
fibres is presented along with the experimental work
conducted. 

The experimental work was conducted to evaluate
the compressive strength and flexural strength of self-
compaction concrete with 0.1%-0.7% of glass fibres,
with the increment of 1%. 

The SCC was designed and cast as per EN
guidelines. 

The fresh and hardened properties of concrete show
better result up to 0.4% of glass fibre content and
shows a decreasing trend for higher percentages of
fibre content. 

A dataset of 128 samples collected was used to
predict the output variables such as compressive
strength and flexural strength of SCC with glass fibres. 

The mathematical modelling was deployed using
ANN in MATLAB 2020 by adopting the Levenberg

algorithm. 
The statistical indicators such as R2 and RMSE found

for the developed ANN model reveal that, the results
are obtained with high accuracy. 

ANN methodology is a suitable tool for predicting
the strength of self-compaction concrete with different
percentages of glass fibres. 
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