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Basic Oxygen Furnace (BOF), TBM type (Thyssen – Blas – Metallurgie) is one of the heat units occurring in a steel production
process. The refractory lining of BOF consists of several zones and is lined with MgO-C bricks. For the above mentioned zones
refractories with different properties are selected due to the different factors influencing the corrosion process. Intense wear
of refractories is observed mainly at the slag spout zone in accordance to the influence of thermochemical, thermomechanical
factors (including the oxidizing atmosphere). The aim of this paper is to find the regression formula with satisfactory forecast
measure of fit, which will make it possible to predict the refractory material wear in the slag spout zone of BOF depending
on the real wear measurement made during the BOF operation. Calculations were conducted with the use of regression trees
with CART algorithm (Classification and Regression Trees), Multivariate Adaptive Regression Splines (MARS), Boosted Trees
algorithm and Multilayer Neural Networks MLP type (Multilayer Perceptron). Selected metallurgical parameters registered
during the BOF campaign are the independent variables discussed in refractory material wear models, whereas the wear rate
of refractory materials calculated per one heat is set as a dependent variable. 
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Introduction

Basic Oxygen Furnace and Electric Arc Furnace are

two heat units commonly used in the steel production

process where at the beginning steel melt is prepared

for the secondary metallurgy processes. In 2020 57,4%

of crude steel produced in Europe was obtained from

the Basic Oxygen Furnaces [1]. The refractory lining of

such converters is made of high quality magnesia –

carbon refractories. The designing process of lining is

taken mainly due to the necessity of ensuring a safe

and longest as possible operation time. Basic Oxygen

Furnace campaign usually lasts for several months and

the time of operation depends on the exploitation

conditions and metallurgical parameters occurred during

the campaign. The wear process of refractory lining is

influenced by parameters like chemical composition

of hot metal (Si, P, C, Mn, S content), hot metal

temperature, temperature of melt at the end of the process,

oxygen activity in the metal bath, chemical composition

of slag etc. The main factors influencing the wear rate

of MgO-C type refractories used for Basic Oxygen

lining and overall issues concerning the corrosion of

MgO-C materials lined in a steel metallurgy heat units

are described briefly in [2-10] where authors additionally

propose different material solutions for selected Basic

Oxygen Furnace wear zones. Another important factor

influencing the wear of the refractory lining at the

beginning of the campaign are thermal shocks associated

with a preheating stage and mechanical stresses, which

occur during the test vessel rocks. Moreover, thermal

shock occurs during the hot metal load into a converter.

Recently, different techniques of lining conservations

like gunning, slag splashing and slag washing were

developed which help to provide longer operation time.

From the point of view of refractories users and

manufacturers, it is important to have an opportunity to

predict the wear rate of refractory materials depending

on the factors/process parameters which could be

controlled and observed during the converter operation.

To assess how the process parameters influence on the

wear rate of refractories it is possible to use the Machine

Learning Techniques. The attempt to use Neural Networks

for such assessment with analysing real exploration

data was taken by Zelik et al. [11].

This paper is a continuation of analysis taken in [11]

with use of an another Machine Learning Techniques

described by Hastie et al. [12] including CART algorithm

(Classification and Regression Trees), Multivariate

Adaptive Regression Splines (MARS), Boosted Trees

algorithm and Multilayer Neural Networks MLP type

(Multilayer Perceptron).

Modelling the wear rate of the refractory lining of

BOF was conducted on the basis of measurements of

selected metallurgical parameters registered during its

operation at the Steel Plant. There is no similar calculation
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in literature which would process different ML algorithms

for predicting the wear rate of the slag spout zone

refractories in BOF lining. 

MgO-C material allocated for slag spout zone of

Basic Oxygen Furnace.

In the slag spout zone high quality MgO-C refrac-

tories are used. Such materials consist mainly of fused

magnesia FM97.5 or FM98 type with mean crystals

diameter > 1,000 µm, flake graphite content about 12 –

15% mas. As a binder liquid pitch is used. Parameters

of the material which was installed in the converter and

for which calculations are conducted are given in Table

1. This material is classified as MC95/10 in accordance

to PN-EN ISO 10081 – 3:2006 (Classification of dense

shaped refractory products - Part 3: Basic products

containing from 7 percent to 50 percent residual carbon).

This material is characterized by high corrosion resistance

(including oxidation resistance), erosion resistance,

excellent physical parameters (apparent porosity, bulk

density).

Selection of parameters influencing the wear of the
MgO-C type oxygen converter lining. 

During the Basic Oxygen Furnace operation selected

process parameters are registered, which make it

possible to control the chemical composition of hot

metal and parameters of processing liquid melt.

Parameters which have a significant impact on the

wear rate of refractories are as follow: Si, C content in

hot metal, temperature and mass of hot metal, oxygen

activity in metal bath, temperature at the end of the

process, amount of oxygen used during the upper blow,

amount of calcium added to the vessel, amount of

additives which are the source of MgO, concentration

of MgO, FeO, Al2O3, SiO2 in slag. During the campaign

the process of conservation (gunning, slag splashing,

slag washing) is registered, but the procedure of this

registration is still improving. Corrosion mechanism of

MgO-C materials and mentioned above parameters

with their impact on the converter’s durability are

described in [13-17].

Industrial experience shows that 13 parameters have

a particular influence on the MgO-C type refractories

wear rate and were selected for analysis in this thesis:

(X1) hot metal mass [kg/heat], (X2) hot metal tem-

perature [℃], (X3) C concentration in hot metal [%

mas.], (X4) Si concentration in hot metal [% mas.], (X5)

scrap mass [kg/heat], (X6) amount of added calcium

[kg/heat], (X7) amount of oxygen O2 in upper blow

[Nm3/heat], (X8) final temperature [℃], (X9) oxygen

activity [O] in metal bath [ppm], (X10) MgO concen-

tration in slag [% mas.], (X11) slag basicity, (X12) total

Fe concentration in slag [% mas.], (X13) amount of

additives which are a source of MgO [kg/heat].

Experimental 

Initial data preparation
The wear rate of the refractory lining is measured by

Steel Plant Staff with a help of a special laser device.

The amount of measurements during the campaign

depends on the production schedule and it is always

about 15-20 measurements. The wear rate is determined

by calculating the loss of the refractory material observed

in a measurement period in relation to the number of

heats realized in this period. That way the wear rate

estimates the value of material lost calculated per one

heat [mm/heat]. Fig. 1 shows the mean values of the

residual thickness of the bricks from the left and right

slag spout zone obtained from laser measurement. On

Fig. 1 two points show that the thickness of lining

Table 1. Parameters of MgO-C material installed in slag spout zone of BOF.

Parameter Mean value* Standard Deviation Standard

Apparent Porosity [%] 3.11 1.05
PN – EN 993 - 1

Bulk Density [g/cm3] 3.06 0.03

Cold crushing strength [MPa] 26.40 3.30 ISO 10059-1

Carbon content [% mas.] 14.17 1.45 HFF – IR Leco CS300

MgO in magnesia part [% mas.] 97.44 0.13

XRF – X’Unique II/ ISO 12677

CaO in magnesia part [% mas.] 1.78 0.13

SiO2 in magnesia part [% mas.] 0.47 0.03

Fe2O3 in magnesia part [% mas.] 0.09 0.01

Al2O3 in magnesia part [% mas.] 0.10 0.03

* Mean value of laboratory tests result conducted in ZM “ROPCZYCE” S.A.

Fig. 1. Residual thickness of refractory lining in slag spot zone of
BOF. Squared points show a thickness increase. 
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increased heat after heat which is associated with

residual slag stuck to the lining, residual gunning mixes

or slag stuck to the lining after the slag splashing

operation. In real conditions it is not possible to observe

an increase in the lining thickness. For this reason two

mentioned above points were substituted by interpolation

based on the linear trend assumed across the entire

campaign. 

Linear interpolation was conducted with the use of

Time Series and Forecasting Module provided by

Statistica 13.3. software. Values which show residual

thickness increase were deleted and substituted by

values forecasted on the basis of linear trend, which is

shown in Fig. 2. In this method algorithm fit the linear

trend function to time series with the use of least

square method. 

Basing on laser measurement of lining residual

thickness, the wear rate of the refractory lining was

calculated per one heat. The campaign was finished

after 2386 heats. In calculations conducted in this paper

first 114 heats were not taken into consideration due to

an abnormal lining wear associated with thermome-

chanical rather than thermochemical factors. Last 20

heats were not taken into consideration too because of

not conducting the measurements by the steel plant

staff. It is an usual practice when coming to the end of

campaign an intense wear of lining can be easily seen

and visual assessment of lining condition is enough to

come up with the decision of taking out the heat unit

from operation. Finally, data from 2252 heats was taken

into analysis. The calculated wear rate was assigned to

every heat from the measurement period. For example

when measurement was taken after 150 heats then

calculated wear rate was assigned to heats number 1-

150. The wear rate after assignment to its period is

shown in Fig. 3. 

Data collected from the analysed campaign contains

of missing values and data which should be deleted

because of its unreal values (ex. amount of scrap and

hot metal excessing vessel capacity), values equal “0”

are deleted too. The contribution of significant values

in the data set before replacing missing values is shown

in Table 2. The initial data preparation was conducted

with the use of R language and Statistica 13.3. software.

The missing values were replaced with the use of Time

Fig. 2. Residual thickness of refractory lining in slag spot zone of
BOF. Squared points show values obtained from linear inter-
polation. 

Fig. 3. Wear rate during BOF campaign. 

Table 2. Number of important observations (from the total
number of observations, n=2252) before replacing missing data.

Variable
n significant 
observations 

% significant 
observations

X1 2199 97,65

X2 2209 98,09

X3 2220 98,58

X4 2202 97,78

X5 2222 98,67

X6 2251 99,96

X7 2227 98,89

X8 2223 98,71

X9 2162 96,00

X10 2030 90,14

X11 2030 90,14

X12 2030 90,14

X13 2155 95,69
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Series and Forecasting Module form Statistica 13.3

software. The missing values were replaced using

interpolation based on neighbouring non-missing points.

The graphical method can be explained as connecting

with a straight line the point located directly before and

the point directly after the point with a missing value.

The method assumes occurrence of autocorrelation in

the data set when each observation is similar to the

previous one. Si concentration in hot metal (X4) with

its standardized values and points with replaced missing

data is shown in Fig. 4. 

After replacing missing values, data smoothing for

every variable was taken. The model of simple exponential

smoothing was chosen with smoothing coefficient α =

0,2 calculated by formula (1) [18]:

(1)

where: yt is value of independent variable at the time

t,  – its forecast at the time t (smoothed value), α –

smoothing coefficient as a weight for calculated

weighted means. Smoothed value  at the time t+1

is a weighted mean of last observation with weight α

and its prediction with weight 1 – α. Smoothed value

(predicted) at the time t+1 is as sum of predicted value

at the time t and fraction of previous prediction error

value u (yt + ). As a result of the described procedure

each observation from smoothed time series is a mean

value of all previous observations when weights

decrease exponentially. If  = 1, then smoothed time

series is the same as the observed series. If  = 0, then

series is constant and equal to initial observed values.

For this reason α should be chosen from range 0 <  <

1. In this analysis smoothing coefficient  = 0.2 for

provide smooth reaction of prediction values for

variability of independent variables. Examples of data

before and after smoothing are shown in Fig. 5-6.

After smoothing the data values were standardized

according to Formula 2 (2):

(2)

 

ŷ
t

ŷ
t 1+

ŷ
t

 

Fig. 4. Standardized values of Si concentration in hot metal (grey points) and missing values replaced by interpolation (red points).

Fig. 5. Standardized values of Si concentration in hot metal (X4).
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where: zi – standardized value of independent variable

Xj, where j = 1, …, 13, x – mean value of Xj, sXj

standard deviation for variable Xj.

Model construction 
Before setting up the model parameters, initial data

set was divided to testing and training data with pro-

portion equal 7:3. The proportion of testing and training

data was estimated by the matter of trial and error till

achieving the best model quality measured by different

measures of fit further described. The calculation was

conducted with the use of Statistica 13.3. software. 

Parameters for building CART model were set as the

following: minimal cardinality of nodes: 3% of entire

number of measurements, maximal number of tree

levels: 12 and n of child node: 10 (minimal cardinality

of node created as a result of division).

Parameters for building the MARS model: maximum

amount of basis function equal 90 (maximum amount

of function which can be taken into the model before

being cut). Interaction level: 3 and penalty for adding

additional function to model: 2. Above mentioned

parameters were estimated by the matter of trial and

error to achieve the best model fit. 

Parameters of Boosted Trees: number of analysed

trees necessary for building the model: 500, minimal

cardinality of nodes as 5% of entire number of mea-

surements, maximal amount of tree level: 10 and

maximal amount of nodes: 8. 

MLP Network parameters: number of neurons in

hidden layer: 2-10. As an error function SOS (sum of

squares) between set values and output of network was

chosen as a recommended for regression issues. Than

function was chosen as an activation function for

hidden neurons and linear function for output neurons.

20 networks were set up before the training process

and for further investigation algorithm chose only 5 of

them with the best quality measured by correlation

coefficient between dependent variable and its prediction

made by network.

Results and Discussion 

Using CART algorithm the tree with 24 divided

nodes and 25 terminal nodes was obtained. Variable

calculated as a root of tree was hot metal mass (X1)

which is shown in Fig. 7. 

The influence of selected independent variables on

modelling the response function can be assessed by the

generation of importance plot shown in Fig. 8. The

importance plot is generated as a result of multivariate

analysis of impact of each independent variable on

increasing the model quality, setting for every calculation

step a different independent variable as an initial point

of division. Values of the importance rate for increasing

the model quality obtained from each independent

variable are summed up in nodes and scaled towards

the independent variable which acts most effectively.

The independent variable with the most significant

impact on changing the value of response function has

range with value equal 100. CART algorithm found Si

concentration in hot metal (X4) as the most significant

variable. Other variables with significant importance

are: scrap mass (X5), amount of added calcium (X6),

oxygen activity in metal bath (X9) and hot metal mass

(X1).

In MARS algorithm a model with 65 factors and 150

basis functions was obtained. Complexity of this model

makes it difficult to show regression equation and it

will not be shown in this paper. After analysing several

initial model parameters, the model with the lowest

GCV = 0,004641 (Generalized Cross Validation) criterion

was finally obtained. The coefficient of determination

was R2 = 0,71 and its adjusted value is R2 = 0,70. By

significantly expanding the prediction equation, it is

possible to increase the quality of the model, but then

the equation becomes not practical in use. The model

most often refers to basis function for variables: hot

Fig. 6. Smoothed and standardized values of Si concentration in hot metal (X4_Sm).
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metal mass (X1), amount of added calcium (X6), Si

concentration in hot metal (X4) oxygen activity in metal

bath (X9), scrap mass (X5) which is shown in Table 3.

In Boosted Trees method, the number of trees

necessary to build the model was set for 500. The

optimal number of trees is chosen by the software

automatically on the basis of errors occurring in the

training data set, which values are shown in Fig. 9.

There is no effect of overlearning observed during the

training process which is characterized by spreading

the curves describing mean square error in training and

testing data. The optimal number of trees was calculated

as 490 and was used for further calculations.

Similarly to CART algorithm, importance plot was

generated and the most significant variables are: Si

concentration in hot metal (X4), oxygen activity in

metal bath (X9), hot metal mass (X1), scrap mass (X5),

amount of added calcium (X11) which is shown in Fig.

10. 5 most important variables estimated both in CART

and Boosted Trees algorithm are: hot metal mass (X1),

Si concentration in hot metal (X4), scrap mass (X5),

oxygen activity (X9). 

Topology of 5 active networks obtained from cal-

culations are shown in Table 4. Networks differ by the

quality of the training and testing process which

depend on the numbers of hidden layers and number of

Fig. 8. Variable importance plot generated by CART.

Fig. 7. Part of a decision tree obtained from CART algorithm.

Fig. 9. Process of estimating the optimal number of trees while
using Boosted Trees.

Table 3. References to basis function in MARS.

Variables X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

Number of references to basis functions 22 4 6 19 16 19 5 4 16 8 15 14 13
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neurons included in layers. Each of the selected networks

contain 13 neurons in the input layer and from 8 to 10

neurons in the hidden layer. In Table 4 in the column

“Training algorithm” the algorithm type and number of

epochs used in the training process are shown.

In the analysed case more than one active network is

obtained. It is possible to calculate a prediction for a

group of network where a prediction is calculated as a

mean value from every single prediction obtained from

active networks. 

The quality of all models were characterized by

calculating different measures of fit for training and

testing data. Scatterplots showing observed and predicted

values of dependent variable are shown in Figs. 11-14.

A comparison of observed and predicted value

results was made with the use of different measures of

Fig. 11. Scatterplots for observed and predicted values: (a) CART
training data, (b) CART testing data.

Fig. 10. Variable importance plot generated by Boosted Trees.

Table 4. Topology of 5 active networks obtained from the training process. 

 

Fig. 12. Scatterplots for observed and predicted values: (a) MARS
training data, (b) MARS testing data.
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fit like coefficient of determination R2 calculated in

accordance to Formula (3) and correlation coefficient

calculated in accordance to Formula (4) [18]:

(3)

(4)

where: y – mean value of predicted values, yi –

predicted values, xi – observed values, x mean value of

observed measurements. 

To conduct detailed assessment of models quality

and its accuracy for results obtained by the use of

different machine learning algorithms SSE (Sum of

Squares) values were calculated using Formula (5)

[18], where yi – observed value,  - predicted value, n

– number of observations.

(5)

The MSE (Mean Squared Error) was calculated with

the use of Formula (6) which is an absolute measure-

ment of model fit.

(6)

Another measure of fit calculated for obtained result

is RMSE (Root Mean Squared Error) which is a

measure of distance between predicted and observed

value and it is calculated with the use of Formula (7) as

root value of MSE. MSE = 0 means that our data is

perfectly fit whereas the lower the RMSE the better the

measure of fit. RMSE expressed in the measurement

units indicates the average error of selected prediction.

(7)

One of the commonly used measurement of fit called

MAPE (Mean Absolute Percentage Error) [19] was

calculated with the use of Formula 8 and MAE (Mean

Absolute Error) calculated with the use of Formula 9.

(8)

(9)

Table 5 shows a summary of all calculated measures

of fit for results obtained in training and testing data

sets in applied machine learning algorithms. RMSE is

 

 

ŷ
i

 

 

 

 

 

Fig. 14. Scatterplots for observed and predicted values: (a) ANN
training data, (b) ANN testing data.

Fig. 13. Scatterplots for observed and predicted values: (a)
Boosted Trees training data, (b) Boosted Trees testing data.
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considered as the most authoritative measure of fit. The

lowest RMSE value equal 0,031 in training data and 0,047

in testing data is obtained for Boosted Trees algorithm.

Conclusions

• The quality of predictions obtained with evaluated

models is not at a satisfactory level. The reason is

associated with the quality of initial data set collected

during BOF operation, particularly:

- low frequency of lining residual thickness mea-

surements,

- missing data in initial data sets for selected

variables,

- lack of detailed information about conservation

scheme.

The preparation of initial data set for analysis is

crucial for the best quality model development. 

• The prediction of the best quality characterized by

selected measures of fit was obtained with the use

of Boosted Trees and MLP algorithms. However,

relatively high values of MAPE suggest a necessity

of conducting further attempts to predict the wear

rate of refractory lining in the slag spout zone of

BOF with the use of properly prepared initial data set.

• In accordance to CART, MARS and Boosted Trees

models it is possible to inidicate  4 most important

variables: hot metal mass (X1), Si concentration in

hot metal (X4), scrap mass (X5),  oxygen activity

(X9), which is confirmed by practical observations

connected with industrial experience.

• For increasing the quality of refractory lining wear

prediction it is necessary to include a conservation

scheme data into the initial data set which will

enable the use of mixed models containing both

qualitative and quantitative variables (numbers of

gunning operations, slag splashing done and slag

washing by rocking the vessel). 

• It is necessary to conduct a laser measurement of

lining thickness just before a converter stoppage. 

References

1. EUROFER, in “European Steel in Figures 2021” (Accessed
October 10, 2021).

2. S. Biswas and D. Sarkar, Springer, Cham. 1 (2020) 289-
327.

3. R. Bai, S. Liu, F. Mao, Y. Zhang, X. Yang, and Z. He, J.
Iron Steel Res. Int. 29 (2022) 1073-1079. 

4. B. Deo, Trans Indian Inst Met 70[8] (2017) 1965-1971. 
5. C. Pagliosa, R. Dettogne, V.C. Pandolfelli, and A.P. Luz,

Proceedings of UNITECR 2017 - 15th Biennial Worldwide
Congress, September 2017, Proceeding 0029.

6. E.-H. Kim, G.-H. Jo, Y.-K. Byeun, Y.-G. Jung, and J.-H.
Lee, J. Ceram. Process. Res. 14[2] (2013) 265-268. 

7. M.-H. Bagherabadi, R. Naghizadeh, H. Rezaie, and M.-F.
Vostakola, J. Ceram. Process. Res. 19[3] (2018) 218-223. 

8. Y. Li, Q. Wang, G. Li, J. Zhang, W. Yan, and A. Huang,
Ceram. Int. 46[6] (2020) 7517-7522.

9. E. Benavidez, E. Brandaleze, L. Musante, and P. Galliano,
Procedia Mater. Sci. 8 (2015) 228-235.

10. W. Yan, X. Lin, J. Chen, Q. Chen, and N. Li, J. Ceram.
Process. Res. 17[3] (2016) 161-165.

11. W. Zelik, R. Lech, S. Sado, A. Labuz, A. Lasota, and S.
Lis, J. Ceram. Sci. Technol. 11[2] (2020) 81-89. 

12. T. Hastie, R. Tibshirani, and J. Friedman, “The Elements of
Statistical Learning, Data Mining, Interference and Prediction”
(Springer Series in Statistics, 2008), p.295-416.

13. H. Jansen, Ironmaking Steelmaking 34[5] (2007) 384-388. 
14. J. Lee, J. Myung, and Y. Chung, Metall. Mater. Trans. B,

52 (2021) 1179-1185.
15. Y. Dai, J. Li, W. Yan, and Ch. Shi, J. Mater. Res. Technol.,

9[3] (2020) 4292-4308.
16. C. Pagliosa, C. Resende, A.P. Luz, and V.C. Pandolfelli,

Refractories Worldforum 9[1] (2017) 89-93.
17. Y. Tsutsui, K. Takou, and S. Umeda, “Magnesia-Carbon

Refractories for Converters” Nippon Steel Technical Report
125 (2020) 1-6.

18. A.D. Aczel and J. Sounderpandian, “Statystyka w
zarzadzaniu” (WN PWN SA Warszawa, 2018) p.605, 622,
637, 817-821.

19. D.A. Swanson, J. Tayman, and T.M. Bryan, J. Pop. Research
28 (2011) 225-243.

Table 5. Values of calculated measures of fit.

TRAINING DATA SET

Algorithm SSE MSE RMSE R2 R MAPE MAE

CART 6,811 0,004 0,065 0,559 0,747 24,673% 0,057

MARS 4,195 0,002 0,051 0,716 0,846 17,987% 0,047

Boosted Trees 1,590 0,001 0,031 0,899 0,948 11,086% 0,029

ANN 3,521 0,002 0,047 0,789 0,886 16,012% 0,041

TESTING DATA SET

CART 5,445 0,008 0,091 0,429 0,655 27,598% 0,066

MARS 3,329 0,005 0,071 0,649 0,805 21,316% 0,054

Boosted Trees 1,458 0,002 0,047 0,849 0,921 13,439% 0,035

ANN 2,932 0,004 0,066 0,687 0,829 20,233% 0,049


